INTERDISCIPLINARY RESEARCH SCENARIO TESTING
OF EOSDIS

Final Report
Under
NASA Grant NAGS-1961

Covering the period of
February 1998 - August 14, 1999

Prepared by

G.D. Emmitt
Principal Investigator
University of Virginia

Charlottesville, VA 22903

12 November 1999

Overview

During the reporting period, the PI has continued to serve on numerous review panels, task forces and
committees with the goal of providing input and guidance for the EOSDIS program at NASA Headquarters
and NASA GSFC. In addition, the PI has worked together with personnel at the University of Virginia and
the subcontractor (Simpson Weather Associates (SWA)) to continue to evaluate the latest releases of
various versions of the user interfaces to the EOSDIS. Finally, as part of the subcontract, SWA has created
an on-line HDF tutorial for non-HDF experts, particularly those that will be using EOSDIS and future EOS
data products. A summary of these three activities is provided below.

Participation on EOSDIS Panels and Committees

During the reporting period, the PI has been involved in numerous activities related to preparing for the
EOSDIS for the Terra launch, and planning for the post 2002 era:

Reviewing prototyping proposals related to IT

Chairing the EOS Science Data Panel

Conducting surveys on the needs and interests of the IDS teams

Participating on the EOSDIS Review Group

Participating in the NewDIS activities lead by NASA HQ.

Serving on various ad hoc panels dealing with the EOSDIS and its readiness for operations
Attending SEC and IWG meetings.

e @ ® ¢ ¢ & o

Until recently, ESDIS was responsible for soliciting and awarding funds to develop or evaluate concepts
that would have significant potential for the AM-1 platform era, as well as the period of time beyond.
Approximately 20 proposals were reviewed at the request of ESDIS.

In the fall of 1998, the Pl was elected chair of the Science Data Panel. A Panel meeting was held in May,
99 (see Attachment A). The Data Panel’s recommendations were forwarded to the ERG that met soon after.
The Data Panel’s future is still an issue. However, since it serves the IWG, the Panel will remain active and
will meet when it is deemed necessary.

As part of the descoping and budget cutting associated with EOSDIS, the PI was asked by ESDIS to survey
the IDS teams for their reactions to the proposed OPTION A+ . The results of the survey were reported to
the ERG and the SEC. A copy of the survey is included in Attachment B.

The current EOS EDC contract expires in 2002. NASA Headquarters commissioned a study to be chaired
by Martha Maiden. The study was called the NewDIS. The PI was a consultant to the study team and
attended two of the workshops.

During the course of getting the EOSDIS ready for support of the Terra launch, the PI was requested to
serve on several ad hoc review teams. The most recent such team was the board for the Operations
Readiness Review for the Terra/Sage HI launches.

Evaluation and Tire Kicking of EOSDIS User Interfaces

In response to several of the defined tasks, SWA together with the PI and a student at UVA continued to
evaluate the releases of various versions of the user interfaces to the EOSDIS. In particular, the student and
SWA continued this advanced tire kicking to probe and evaluate the WWW version of the V0-gateway. In

addition, alternate search methods (i.e., individual Data Centers, DAACs, and Internet search engines)
outside of VO were also investigated and compared to VO results.

Inexperienced users of VO at both SWA and UVA were tasked with conducting searches for data sets using
different types of keywords and valids as input. Searches were attempted for data sets that should contain
information on winds, clouds, land use, vegetation cover, surface reflectance, lidar measurements, dust, and
aerosols. The data set searches were done using the WWW V0 gateway, by contacting individual data
centers and DAACs, and via Internet search engines (i.e., Infoseek, AltaVista, etc.).

One of the most telling examples was the search for AVHRR data using different valids (dust, aerosol, etc.)
that were known to be covered by the AVHRR data. Inconsistent results were found under different search
conditions. The valid of "dust" resulted in no "hits" of AVHRR data while using "aerosol" as a valid
resulted in hits depending on the other information supplied.

One of the main findings of this exercise was that the searchable metadata for data sets doesn't always give
the proper information, and is often populated by jargon that is of no use to the non-expert user or one
unfamiliar with the data sets. These results helped lead to the submission and subsequent award of a
proposal by a UVA colleague (Dr. Jim French) that is attempting to find better definitions for metadata and
the way that they are used and searched by the interactive data systems such as V0.

An On-line HDF Tutorial

Under the subcontract, SWA has developed an on-line tutorial entitled "An HDF Tutorial for Beginners:
EOSDIS Users and Small Data Providers."” The tutorial was geared mainly for HDF non-experts,
particularly potential future users of EOS data, with the main purpose of providing the necessary
information needed to enable a user to read and write data in HDF. Information is provided in a clear an
easy to understand form and includes step-by-step directions on how to work with the HDF files. Also
included in the tutorial are sections on the basics of HDF and the HDF library; programming with HDF;
available tools for HDF (including links), example programs, and many other features.

The tutorial was developed using, but not limited to, the following resources:

. Lessons learned by novice HDF users at SWA and UVA
Meetings with NCSA
. Studying all existing documentation and applying/collating the most important material

for novice users

Attending annual workshops on HDF and HDF-EOS

Learning common problems with HDF through user feedback on the tutorial and
participation in various HDF newsgroups and mailing lists

Copies of the monthly reports reflecting the progress of the tutorial development are available upon
request.

The tutorial has been constructed in two parts. First is what we call the "Lecture" component where we
present what we think is the information necessary for a novice user to learn what HDF is, what it can be
used for, and how to apply it in practice. Included in this "Lecture” material is a step-by-step outline
detailing what the user must do to successfully read or write an HDF file. The second component of the
tutorial is a question and answer section (what we call the "Laboratory") which tests the user's knowledge
of HDF, concentrating on the information needed by the novice or average HDF user to work
independently with the HDF library to read and write HDF files.

We realize that the familiarity and knowledge level of the users of this tutorial will span a wide range. As a
result, we think it should be up to the users to decide how they wish to learn and navigate through the

tutorial. However, we do advise that those with very little or no knowledge of HDF should first preview
and study the lecture material before testing themselves with the Laboratory section.

The tutorial was initially developed in Visual Basic and was only available for users with Windows 95/98.
Early drafts of this initial version were partially described in the 16 February 1998 Progress Report,
including reprints of conference papers given on the tutorial. However, the tutorial is now available via the
World Wide Web and can be accessed at Simpson Weather Associate's HDF page at the following Internet
address: hitp://cyclone.swa.com/metcorology/hdf/. A copy of this HTML version is found in Attachment C.
In addition to the Internet/HTML version, a Microsoft word version of the tutorial is also available for
download at the same address. A copy of the Microsoft Word version of the tutorial is found in Attachment
D. It should be noted that the copies of the tutorial placed in the attachments do not contain the entire
Question and Answer section of the tutorial due the interactive nature of the Laboratory. However, a few
examples of the questions are included in Attachment C. The entire Laboratory can be viewed by visiting
the above-mentioned site and viewing the HTML version of the tutorial.

In addition to the above tutorials, ongoing work under a follow-up proposal is expanding the tutorial to
include additional HDF data types and to cover HDF-EOS. HDF-EOS is an extension of the HDF library
that helps the user to deal with certain types of point, gridded, and swath data sets that will be routinely
generated from EOS missions. A Beta version of this tutorial should be available shortly at the same
Internet site noted above.

ATTACHMENT A

Report from the May 1999
Science Data Panel

Dr. G.D. Emmitt
University of Virginia
Charlottesville, VA

(In Fulfillment of NASA Contract NAG5-1961)

November 12, 1999

6661 ‘AR {7
s1ouenbpesH VSVN 18 SUnson oy
BAN Wwwy ' ‘D

[dued eje(AY) wo.aj 31o0day

SSIAMeN -

JuswILRdXY uoneIdpa] —

+vuondp -

0A —

SINII -

sOvva -

SOod —

SOdH/SONH —
:Uo pajauIg
USpIBA eyl :s19)enbpeoy
PIBUO(IOIN U pue ‘QIOOJA NI * ewey :soaneiuasardoy SIS
sroquaw [dued g

VA l[rasanofrey) ul 6661 ‘Ae]N €-C PISH

SUNIIA [dukd ®Ie(JO AlemImIng

"JORIJUOD

JUSLIND JY) JO UOISN[OU0D 3y} 18 () ® N 10} Alred ojqisuodsal

Iayjoue 0) WdISAS SO Y} JO IQJSURI) SMO[[E Jey) Aem B

ut pa[[YIny oq Aiqentod unoyeld pue Liqeurejurew ‘AjLrenpour
10} SyuaWaINDAI | [9A] U 1Y) 2InSU? 03 393(01d oy} so81n [puey —

SOH

"$3SSO[BIEP ()] INOY}IM SAep
¢ 919[duIod 01 SOH JO dIN[IB] oY} YIM POUIIOUOI SI [dued SY[—

IOQUIDAON] ISB[20UIS
opew ssax3oid pue 110]J0 [enue)sqns ay) sajeroaidde joued vreq —

SWII)SAS UOISSIJA] o

SUOT)BPUIWW0IIY/SIUIWWO0))
S [oued

"SUOISSTW juanbasqns
PUE BII], I0J S3[NPAYIS AISAI[IP 0} OUISYPEL SNOLIAS JI0W
21nsud 393(01d 9y} 18y} SPUSWIWO099] [ouR] Y], *soroudpusdapiojur
3urssado01d eyep Auew 199JJe [[IM elEpEIOW pue swyjLoe
0} $a3UBYD)NUIWI ISB[JUBDITUSIS ‘SOSBD SWOS UJ *SWed |
JUSWINIISUT SWOS Aq BIEPLISW pue dIemijos Juissaooid 9ouaios

JO AISAT[SP 109.1100Ul PUR 9)B] Y} YIM PIUIIOUOD SI [Ued Y[—

SWRY |, JUSWINISUT

SUOI)EPUIW W0 /SPUIWWO))
s [pued

"$1S00 [euonIppe Aue 3uipasjjo
10J SUOBPUIWIWIOIAI YIIM puodsal [[ImM pue dAIYdIE JuIjjol,, dy)
JO UOISUIXd Yuow Q-7 Y} 10J 9)eW]SS 1503 e sjsanbai [oueq vle(q oY, —

" QAIYaIR Surpod,, yyuow g pasodoid
3} YN pajerdosse 3uissadoldal [euonIppe oyl qIosqe 0} dARY [[IM+Y
uondQ jo Aoedes Suissasold X ¢ oYy ‘os[y "sasA[eue AJi[iqeLieA [enuue
orepowrtnodoe Afererrdoidde arow 03 sypuow g1 Ajqeisyeid pue syjuow
C1 JO umuwluruI 8 0] pOpusIXa 3q PINOYs SAIYIIR FUI[[Ol,, JIUOW 9 Y] —
‘sapIunwwod suonesijdde ejep pue yoreasal yues
AU} W0} S3A1EBIUISAIADI UJim PIBOQ UOIBOO[[B 3DINOSAI BIEP SPN[OUl OS[e
pinoys uerd sty *+y uondQ yim pajeIdosse S[9A3[paonpal 3y puokaq
SPUBWSP PoJBNSUOAP AU 193U O UOTYSE] A[oWI} € Ul pajuswidne oq [[im
wdIsAs ayy Jo Loedes uonnginsip pue Surssasoad oy 18y Aunwwod Jasn
ay1 aInsse [[1m Jey) ueld d[qera e azd1jqnd pue dojaaap 03 speau S Y] —

+V uondQ .

SUOI)EPUIWWI0IIY/SIUIWWO))
s [oued

'$198 BIRP JY3LI Y] 0} SI19sn JuIjd2IIp Ul pie

03 saged qam apdwis Surdojoaap Jo {s3unesw N[1e suoneuasaid

‘[puuosiad DYV Yim suoissas Juruter) apnoul siaquidw [dued

Aq spew suonsagadns swog “Apdwoid onsst snyy ssaippe 10a(oid

3] JB) POPUIWIWIOI ST I] "WdISAS) JO AN1qesn oY) 0] YSLI

dlqerdadoeun ue syuasardar (ATe[nqes0A SS3098 B1RP) SPI[RA 9Y] JO

91B)S JUaLIND Y], ‘uondodxa auo yim suonesado gounel-jsod uro)
Jeau 10J arenbape SN[QA pPAluswdne ay) spulj [dued ele(] Y|, —

(SINTLLS) 0A -

SUOT)BPUIWIUL0IIY/SHUIWWIO0)
s oued

*SpuBWISp WIISAS vlep Suissaid pue djeIpawIwl I19Y)0 Auew

U ulfesp d[ym spasu aamng pajedionue 1oy ueyd 0 300(01g
) Aq paoey d3ud[eyd Y sarerdardde pue spuejsiopun [oued oy], —

"Joune[J9)e SYIuoW 9 Nun paLRyap oq suerd SNILLT [euY
Aue UO SUOISIOSP PUE [BJUAWAIOUT 3q SaFueyd Jo uoneuswadu
Je]) PUSWIWIOII 9M ‘IOAIMOY ‘sjuswdAoidu [euonippe

pasu [[Im SIATTT 3Y3 ey 103(01d a1 yim sinouod [dued ayy —

(SINILLD 0A -

SUONEPUI W0 /SIUIWTO0)
s [oued

"pajsonbal A[jeuLIof J1 MI1AdI © yons apiaoid 03 Jurf[im i [pued BlR(] oY -
"OUN Y1 03 modax SSTMAN Y3 Suigruugns
0} JoLid M31AaI Juspuadapur U JO UOHBPUSWWOII (Ued) SSIAMAN Y1 Jo) s arey)
oy UM $3213e [due{ AU], ISAIdUI JO I1[FU0d Joj [enualod ay) sareasd podos 1Ry}
Jo juardroar ayy oq osye podar SSIMAN Y} Jo Joyine pea| ay) Suiaey ‘uosiad swes
o) aIe SWaIsAsS uonewLIojul Joj d[qisuodsar uosiad siapenbpesy aY) pue wea .
SSIAMAN 33 JO Jrey) ay) yuawiadxy uoneIapa ayp jo Jedeueur oY) ApUaLiny —
(Buneow joueg
eIe(q 2y} 03 Jorid s[qe[ieae jou sem jodar SSIIMIN Y] 210N) UOISIA SSIMAIN
oy 0 “rernorued ur ‘oje[al Aoy se douaradxa (T JUALIND JY) woJj , paures]
SUOSSIT,, oY} JO UOTISOAXd J8J[O B JO OB JUSLIND AU} YIIM PIUIIIUOD SI [dUB] WL -

SSIAMdN -

"HOJJ Tedk ¢-7 SIY) 10J
BLISILIO $5300NS Jed[d ap1aoid IaFeuew juswiadxa oY) Jey) SPUSWIWIONDI [due Y] —

"$5300n0s 31 93pn 03 JuUsUWILIAAXS UOIIRISPAJ AY) UT A[183 00) ST} —

JURWILIdAX Y UOJBIIPIT

SUOI)BPUIW W0 /SHUIWWO0))
s [oued

ATTACHMENT B

Survey Requesting IDS Teams
Input on the Descoping and
Rescoping of the EOSDIS

Dr. G.D. Emmitt
University of Virginia
Charlottesville, VA

(In Fulfillment of NASA Contract
NAG5-1961)

November 12, 1999

Request for input from the IDS teams to the process of
descoping and rescoping of the EOSDIS

As you know, there is currently an intensive effort underway within NASA, the
ESDIS Project in particular, to develop an EOSDIS plan that will stay within a shrinking
budget over the next 4-5 years. After that period, the expectation is that there will be a
transition to the “New DISS” which is being studied by a team headed by Martha
Maiden. For a status report on EOSDIS see Skip Reber’s article on page 37 of the
Nov/Dec issue of The Earth Observer.

The bottom line is that some of the original functionality and performance of the
DIS is going to have to be dropped or rescheduled. The ESDIS has presented numerous
sets of options for meeting budget guidelines. There are detailed matrices of
requirements, data interdependencies, and so forth for those who wish to delve into the
trade space in detail (e-mail me if you want 51 viewgraphs, the latest version of those
presented by Mike Moore at the IWG meeting). However, since these budget and scoping
exercises seem to be nearly continuous and the details always changing, the EOSDIS
Data Panel has been asked to provide some general guidance from the user community,
from the IDS teams in particular. Thus I am asking for a few minutes of your time to
weigh in on this matter.

First, here is my summary of Option A+ (don’t be misled by the + sign) which is
currently favored by ESDIS and agreed to by Ghassem.

® Rely on the existing VO user interface (with some modest upgrades) for the
early AM-1 mission era, put an indefinite hold on the development of the ECS
JEST, and see how far we go with the rapidly changing data search capabilities
available on the “Web”.

¢ Eliminate automated order tracking
Reduce system data processing capacity from 4x to 3x where “x” is the
capacity required to process all data collected in 24 hours.

* Reduce the data distribution capacity from 1.6x to 1x where “x” is the capacity
required to distribute all data processed in 24 hours.

® Archive levels 1 and 2 data products for only six months (with exceptions for
those cases when there are no higher level products) with processing on
demand thereafter. Level 3 and above data products will always be archived.

e Allow Pl-led data processing to take place at PI institutions or by PI negotiated
arrangements with DAACs

While you may wish to comment directly on one or more of the items above or on
particular issues raised by Mike Moore’s viewgraphs, there are several key trades that
always need addressed when budgets are tightened. They are:

e Providing user services through several focus DAACs (LaRC, GSFC, JPL, etc)
vs. one or two super DAACs. This trade comes down to the cost of people vs.
the importance of the perception of specialized service to the user and the
benefits of DAACs competing with each other for new data sets. By the way,
the super DAACs were not considered for Option A+.

Archiving all Level 2 and higher data products vs. producing higher level
products upon demand (i.e. cost of archival vs. cost of production)

Developing specialized EOS data search and display tools vs. relying on
generally available internet data search tools (puts emphasis on making sure
EOS data are visible to those search tools rather than developing a customized
data/metadata format)

Providing specialized services such as subsetting, coincidence searching, order
tracking, automated version update notifications, etc vs. straightforward data
listing and order functions and media options. (shifts the burden of sifting
through large data sets for the target information from the DIS to the individual
user).

If you do nothing more, please express your opinion, as a cross discipline data

user, on:

Multi vs. centralized user service centers

Rapid data retrieval from archives vs. reprocessing upon demand (less timely,
perhaps)

Using generally available Internet tools to search for data sets vs. customized
tools that may be more efficient.

Simplifying the function of the DIS to advertising data sets and filling orders
without special services such as subsetting, coincidence searching, granule
content searches.

I need to hear from you immediately. No response will be seen by ESDIS as

general agreement with their recommendations for reducing user services.

Dave Emmitt

Chair, EOSDIS Science Data Panel
Simpson Weather Associates, Inc.
809 E. Jefferson St.

Charlottesville, Va. 22902
804-979-3571

804-979-5599 fax

gdcid thunder.swa.com

ATTACHMENT C

An HDF Tutorial for
Beginners: EOSDIS Users
and Small Data Providers
(HTML Version)

by

Mr. Steven Greco
Simpson Weather Associates
Charlottesville, VA

(In Fulfillment of NASA Contract NAG5-1961)

November 12, 1999

Main Topics Page 1 of 1

Main Topics

Tutorial Overview

An Introduction to HDF

The HDF Library: Software and Hardware
Methods of Working with HDF Files
Scientific Data API

Attributes and Metadata

Writing a SDS to an HDF File

Obtaining Information on Existing HDF Files
Reading a Scientific Data Set from an HDF file
Example Programs

. Browsing and Visualizing HDF Data
Laboratory (Question and Answer)

[a—
SYNankwn =

ok
[\

file://C:\HDF 99 HTML\Main_Topics.html 10/27/99

Intro done Page 1 of 3

An Introduction to HDF

What is HDF?
What types of data does HDF support?
Which version of HDF should I use?

Where can | get additional and detailed information on HDF?

Previous Main Topic Next Main Topic

Return to Main Topics

What is HDF?

HDF, which stands for Hierarchical Data Format, is a common data format that has been developed to
aid scientists and programmers in the storing, transfer and distribution of data sets and products
created on various machines and with different software. HDF has been selected by the NASA ESDIS
project as the format of choice for the standard product distribution that will be part of the Earth
Observing System Data and Informations System (EOSDIS).

In addition, HDF also refers to the collection of software, application interfaces, and utilities that
comprise the HDF library and allows users to work with HDF files. The HDF library is discussed in
detail in Section 3 - The HDF Library: Software and Hardware.

Features of HDF

HDF is a multi-object file format for the sharing and storing of scientific data. Some of the most
important features of HDF are the following:

1. Self-describing: For each data object in an HDF file, there is also information (or metadata)
about the data type, size, dimensions and location found within the file itself.

2. Extensibility: HDF is designed to accommodate future (new) data types and data models.

3. Versatility: Currently, HDF supports six different data types and provides software and
applications to read and write these data types in HDF.

4. Flexibility: HDF lets the user group, store, and read/write different data types in the same file or
in more than one file.

5. Portability: HDF software is mainly platform independent and can be shared across most
computer platforms (all platforms have not been tested).

file://C:\HDF 99 HTML\Intro.htm 10/27/99

Intro done ' Page 2 of 3

6. Standardization: HDF standardizes the formats and descriptions of many types of commonly-
used data types (i.e., arrays, images, etc.).
7. HDF is available in the public domain.

Return to top

What types of data does HDF support?

As of the latest release of HDF (HDF4.1 release 3 in May 1999), the HDF library supports the
working with raster images, color or gray scale palettes, multi-dimensional arrays, text strings, and
statistical data (in the form of tables). The HDF library supports the following data types:

Scientific Data sets -- Multi-dimensional integer or floating point arrays

Vertex Data (Vdata and Vgroups) -- Multi-variate data stored as records in a table
General Raster (Gr) -- Raster images

Annotation -- Text strings to describe files and parts of files (metadata)

8-bit Raster images

24-bit Raster images

Palette -- 8-bit color palettes (accompany images)

NOUnALN -~

In addition to these data types supported by the base HDF library, a sub-library called HDF-EOS has
been developed to support the various data types anticipated from the Earth Observing System (EOS)
satellite missions. The HDF-EOS data models include point data, satellite swath data, and gridded
data.

As mentioned in the Welcome section, this tutorial will concentrate on the Scientific Data Model as a
means of teaching the essentials of HDF. More information on the other data models can be obtained
in the various documents (particularly the HDF User's Guide) provided by NCSA through their
anonymous ftp server or World Wide Web home page.

Return to top

Which version of HDF should I use?

The most current version or release of HDF is the best place to begin. As of July 1999, the current
version of the HDF library is HDF 4.1r3. An extension of the HDF library, called HDF-EOS, is based
on this version of HDF and is designed specifically to work with data products anticipated from the
upcoming EOS satellite missions. The current tutorial will focus on the releases (i.e., rl, 12 or r3) of
HDF4.1. One feature of HDF4 that is important, especially to experienced users of HDF, is the
backwards compatability of HDF. That is, HDF4.1r3 is compatabile with earleir versions such as
HDF4.1r1 and the data sets that were generated.

It should be noted that an experimental version of HDF, called HDFS5, has also recently been
developed to address the shortcomings of HDF4. This new HDF library includes simpler source codes,

file://CAHDF_99 HTMIL\Intro.htm 10/27/99

Intro done Page 3 of 3

more consistent and fewer data models, and the ability to work with large data sets (> 2GB).
However, although plans call for the HDF-EOS interface to be based on HDFS5 at a later date, it is
only in the experimental/prototype stage. HDF5 and the associated software will not be covered in this
tutorial. The user is directed to NCSA's HDF5 Page for detailed information.

Return to top

Where can I get additional and detailed information on HDF?

The best sites or locations to find detailed information on all aspects of HDF are the NCSA HDF
Information Server available through the Internet and the NCSA anonymous fip server . Inquiries
should be sent to hdthelp@ncsa. uiuc.edu.

The following documents and information can be obtained through the sources mentioned above:

HDF 4.1 r3 Reference Manual

HDF 4.1 r3 Users Guide

HDF Specifications and Developers Guide v3.2 (mainly for the programmers/developers)
HDF Newsletters

HDF Frequently Asked Questions (FAQ)

Java Products

Frequently Asked Questions about Java and HDF

Release Notes and Man Pages provide information on items that are not covered in the above
documents

HDF software contributions from non-NCSA users

NI B W~

o

In addition, users may wish to join the hdfnews mailing list (by emailing ncsalist@ncsa.uiuc edu and
placing subscribe hdfnews in the body of the message) for discussions and updates on HDF.

Return to top

file://CA\HDF_99_HTMIL\Intro.htm 10/27/99

HDF LIBdone =~ Page 1 of 12

The HDF Library: Software and Hardware

What is the HDF library and how can it be used?
Obtaining and installing the HDF library

Computer platforms supporting the HDF library
Programming languages supporting the HDF library

Compiling the HDF library

Previous Main Topic Next Main Topic

Return to Main Topics

What is the HDF library and how can it be used?

The HDF library is a collection of software routines that provides two types of interfaces which allow
the user to work with HDF files. A brief capsule describing these interfaces is provided below:

Low-level Interface

Application Programming Interfaces (APIs)

Components of the HDF library include the base library, the multi-file library, the jpeg, library, and the
gzip library. The most recent versions of HDF also contain a Java Products, which includes a Java
HDF Interface (JHI) and a Java-based HDF viewer.

The HDF library also provides a set of command-line utilities that allow the user to work with HDF
files outside of the interfaces and within the command level (such as UNIX) of a terminal session.
Outside of the HDF library, there is also a large number of browsing and visualization software
packages (both free and commercial) that allow the user to look at all types of HDF files. These two
methods will be discussed later in the tutorial.

Return to top

file://C\HDF_99_HTML\HDF_LIB.html 10/27/99

HDF_LIB done Page 2 of 12

Obtaining and installing the HDF library

The HDF library and utilities are public domain software and are freely available, along with
documentation, from the NCSA anonymous ftp server. The latest release of the HDF library can be
downloaded via fip from the NCSA Current HDF release. Associated documentation and reference
material can also be obtained from NCSA Current HDF Documentation. The source code of the HDF
library and utilities are available with each "release" of HDF and can be downloaded free of charge
from this ftp site. The files are available in various forms to support users of PCs, Macs, etc...

Unfortunately, the HDF library may not be accessed by every computer platform. The following
sections list the platforms and operating systems on which the latest release of HDF has been tested.

NCSA provides a binary distribution for those platforms supported by HDF. For platforms that are not
specifically supported, the HDF source code is provided.

HDF Binary Distribution

How do you install HDF on your computer system? Detailed directions for configuring and installing
the latest version of HDF can be found in the README and INSTALL files located in the
HDF_Current unpacked subdirectory of the NCSA HDF ftp server.

In order to use the HDF library through C and FORTRAN programs, the user's computer must have
either a C or FORTRAN library linked with the HDF library.

For those users who wish to work with HDF using Java, Version 2.3 of the HDF Java Products has
been released as part of the latest release of the HDF library. Included in these products is the Java
HDF Interface (JHI) for the HDF library. The JHI provides an interface to all the functions of the
HDF library and may be used by any Java application to work with HDF files. The necessary Java
source code can be downloaded from ftp.ncsa.uiuc.edu/HDF/HDF/HDF_Current/java.

These are the only languages which can call HDF routines (more detailed information in
"Programming languages supporting the HDF library").

Return to top

Computer platforms supporting the HDF library

The latest version of the HDF library is HDF 4.1 Release 3. Although the list of machines supported
by the HDF library increases with every incremental version or release of HDF, it is still not possible
to work with HDF files on every single platform or operating system. As of the current release in July
1999, the HDF library is currently supporting the following computer platforms and operating
systems:

1. Sun4 (Solaris 2.6, SunOS 4.1.4)
2. SGI-Indy (IRIX v6.5)
3. SGI-Origin (IRIX64 v6.5-64/n32)

file:/C:\HDF_99 HTML\HDF_LIB.html 10/27/99

HDF_LIB done ‘Page 3 of 12

HP9000/735 (HP-UX 9.03)

HP9000/755 (HP-UX B.10.20)

Exemplar (HP-UX A.10.01)

Cray T90 (CFP, IEEE)

Cray C90

IBM SP2 (v4.2.1)

10. DEC Alpha/Digital (Unix v4.0)

11. DEC Alpha/OpenVMS (AXP v6.2 and 7.1)
12. VAX Open/VMS (v6.2)

13. IBM PC-Intel Pentium (Solarisx86, Linux (elf), FreeBSD)
14. PowerPC (C only- Mac-OS-7.6))

15. PCs with Windows NT/95

16. Windows NT/95

17. DEC Alpha NT

18. T3E (unicosmk 2.0.4.46)

0N U A

As of July 1999 and the latest release of the HDF library (4.1r3), the only platforms that support the
Java HDF interface (JHI) are:

Sund (Solaris 2.5)

SGI-Indy (IR1X5.3)

IBM PC - Intel Pentium (Solarisx86 (2.5) and Linux (elf) 2.0.27)
Windows NT/95

N =

Earlier versions or releases of the HDF library can still be used but may not be compatible with the
platforms listed above.

Return to top

Programming languages supporting the HDF library

As of the current release of HDF (HDF 4.1r3), the only programming languages which are supported
by the HDF library are C and FORTRAN. Although the HDF library code is only written in C, the
library provides both a FORTRAN and Java Interface which converts the code to C and allows the
user to call the HDF routines. This conversion will automatically take place and requires no action by
the user.

Other then the obvious differences between the programming languages, the main difference between
using the different languages is the naming convention, or names used for each HDF function. In
addition, to use and compile HDF application routines through C programs, an HDF header file
(hdf.h) containing standard HDF data type and file access code (i.e. read, write) definitions,
declarations and prototypes for the API routines must be called or included (#include "hdf.h") at the
beginning of the program. These header files are not permitted in all FORTRAN versions and the
needed information must be written into the FORTRAN code (taken from the HDF library file
"constants.f" within "hdf.h").

One of the most recent updates to the HDF library is that it now creates free format FORTRAN

file://C:\HDF_99 HTML\HDF_LIB.html 10/27/99

HDF _LIB done Page 4 of 12

include files during the "make" process on UNIX platforms. This allows FORTRAN 90 programs to
use HDF include files. The FORTRAN 90 files are designated by the ".f90" file extension.

Another recent update to the HDF library is the inclusion of the Java HDF Interface (JHI) as part of
HDF version 4.1r3. The JHI provides an interface to all HDF functions and must be obtained and
installed in order to use Java to work with HDF files. Please see Obtaining and installing the HDF
library for further details.

Return to top

Compiling the HDF library

The following examples (for UNIX platforms) illustrate the general method of compiling the HDF
library using both C and FORTRAN programs. It should be noted that, for C programs, the line
"include mfhdf h" must be included if using the mfhdf library OR the line "include hdf.h" if it is not

being used. Also worth noting is that, as indicated below, the following libraries must be specified in
the following order- libmfhdf.a, libdf.a, libjpeg.a, and libz.a.

C programs

cc -0 <your program> <your program>.c -I<path for hdf include directory> -L<path for
hdf libraries> -Imfhdf -1df -ljpeg -1z

FORTRAN programs

77 -0 <your program> <your program>.f -I<path for hdf include directory> -L<path for
hdf libraries> -Imfhdf -1df -ljpeg -1z

Specific examples for various platforms are provided below. If the platform you use is not listed, the
general instructions should be followed.

The latest platform related information can be found on the NCSA anonymous ftp server at
HDF4.1r3/release_notes/compile.txt.

INSTRUCTIONS FOR SPECIFIC PLATFORMS

Cray C90 or YMP:
C:

cc -O -s -0 <your program> <your program>.c -I<path for hdf include directory> -
L<path for hdf libraries> -Imfhdf -1df -ljpeg -1z

file:/C\HDF_99 HTML\HDF_LIB.html 10/27/99

HDF LIB done Page 5 of 12

FORTRAN:

cf77 -0 1 -s -0 <your program> <your program>.f -I<path for hdf include directory> -
L<path for hdf libraries> -Imfhdf -Idf -ljpeg -1z

Dec Alpha/Digital Unix:
C:

cc -Olimit 2048 -std1 -0 <your program> <your program>.c -I<path for hdf include
directory> -L<path for hdf libraries> -Imfhdf -ldf -ljpeg -1z

FORTRAN:

77 -0 <your program> <your program>.f -I<path for hdf include directory> -L<path for
hdf libraries> -Imfhdf -1df -ljpeg -1z

Dec Alpha/OpenVMS AXP:

To compile your programs, prog.c and progl.for, with the HDF library, mfhdf.olb, df.olb, and libz.olb
are required. The libjpeg.olb library is optional.

cc/opt/nodebug/define=(HDF,VMS)/nolist/include=<dir for include> prog.c
fort progl.for

link/nodebug/notraceback/exec=prog.exe prog.obj, progl.obj, -<dir for lib>mfhdf/lib -
<dir for lib>df/lib, <dir for lib>libjpeg/lib, -<dir for lib>libz/lib, sys$library:vaxcrtl/lib

NOTE: The order of the libraries is important: mthdf.olb first, followed by df.olb then libjpeg.olb and
libz.olb.

Exemplar:
C:

cc -ext -nv -no <your program> <your program>.c -I<path for hdf include directory> -
L<path for hdf libraries> -lmfhdf -1df -ljpeg -1z

FORTRAN:

fc -sfc -72 -0 <your program> <your program>.f -I<path for hdf include directory> -
file://C:\HDF 99 HTML\HDF LIB.html 10/27/99

HDF_LIB done Page 6 of 12

L<path for hdf libraries> -Imfhdf -1df -lipeg -1z

FreeBSD:

C:
gcc -ansi -Wall -Wpointer-arith -Wcast-qual -Wcast-align - Wwrite-strings - Wmissing-
prototypes - Wnested-externs -pedantic -O2 -0 <your program> <your program>.c -
I<path for hdf include directory> -L<path for hdf libraries> -Imfhdf -ldf -ljpeg -1z

FORTRAN:
77 -O -0 <your program> <your program>.f -I<path for hdf include directory> -L<path
for hdf libraries> -Imfhdf -Idf -ljpeg -1z

HP - UX:

C:
cc -Ae -0 -0 <your program> <your program>. -I<path for hdf include directory> -
L<path for hdf libraries> -Imfhdf -1df -ljpeg -1z

FORTRAN:
77 -0 -0 <your program> <your program>.f -I<path for hdf include directory> -L<path
for hdf libraries> -Imfhdf -Idf -ljpeg -1z

IRIX 5.3:

C:
cc -ansi -O -s -0 <your program> <your program>.c -I<path for hdf include directory> -
L<path for hdf libraries> -Imfthdf -1df -ljpeg -1z

FORTRAN:

77 -O -s -0 <your program> <your program>.f -I<path for hdf include directory> -
L<path for hdf libraries> -Imfhdf -1df -ljpeg -1z

IRIX 6.x with 64-bit mode:

file://C:\HDF_99 HTML\HDF_LIB.html 10/27/99

HDF LIB done ' Page 7 of 12

cc -ansi -64 -mips4 -O -s -0 <your program> <your program>.c -I<path for hdf include
directory> -L<path for hdf libraries> -lmfhdf -1df -ljpeg -1z

FORTRAN:

77 -64 -mips4 -O -s -0 <your program> <your program>.f -I<path for hdf include
directory>\ -L<path for hdf libraries> -lmfhdf -1df -ljpeg -1z

IRIX 6.x with n32-bit mode:

C:
cc -ansi -n32 -mips3 -O -s -0 <your program> <your program>.c -I<path for hdf include
directory> -L<path for hdf libraries> -Imfhdf -1df -ljpeg -1z

FORTRAN:
£77 -n32 -mips3 -O -s -0 <your program> <your program>.f -I<path for hdf include
directory> -L<path for hdf libraries> -lmfhdf -1df -ljpeg -1z

Linux A.OUT And ELF:

C:
gcc -ansi -0 <your program> <your program>.c -I<path for hdf include directory> -
L<path for hdf libraries> -Imthdf -1df -ljpeg -lz

FORTRAN (a.out only):
77 -0 <your program> <your program>.f -I<path for hdf include directory> -L<path for
hdf libraries> -Imfhdf -Idf -ljpeg -1z

Solaris:

The -Insl is necessary in order to include the xdr library.

C:

file://C:\HDF_99 HTML\HDF_LIB.html 10/27/99

HDF LIB done Page 8 of 12

cc -Xc -x02 -0 <your program> <your program>.c -I<path for hdf include directory> -
L<path for hdf libraries> -lmfhdf -1df -ljpeg -1z -L/usrt/1ib -Insl

FORTRAN:

77 -O -0 <your program> <your program>.f -I<path for hdf include directory>-L<path
for hdf libraries> -lmfhdf -1df -ljpeg -1z -L/ust/lib -Insl

Solaris x86 (C only):
The -Insl is necessary in order to include the xdr library.

gce -ansi -O -0 <your program> <your program>.c -I<path for hdf include directory> -
L<path for hdf libraries> -Imfthdf -Idf -ljpeg -1z -L/usr/lib -Insl

SP2 (AIX):

C:
xlc -glanglvl=ansi -O -0 <your program> <your program>.c -I<path for hdf include
directory> -L<path for hdf libraries> -Imthdf -1df -ljpeg -1z

FORTRAN:
77 -0 -0 <your program> <your program>.f -I<path for hdf include directory> -L<path
for hdf libraries> -lmthdf -1df -]jpeg -1z

SunOS:

C:
gce -ansi -0 <your program> <your program>.c -I<path for hdf include directory> -
L<path for hdf libraries> -Imfhdf -1df -ljpeg -1z

FORTRAN:
77 -f -0 <your program> <your program>.f -I<path for hdf include directory>-L<path
for hdf libraries> -Imfhdf -1df -ljpeg -1z

t3d:

file://C\HDF_99_HTML\HDF_LIB.html 10/27/99

HDF LIB done Page 9 of 12

C (only):
cc -Teray-t3d -X1 -0 <your program> <your program>.c -I<path for hdf include
directory> -L<path for hdf libraries> -lmfhdf -1df -ljpeg -1z

VAX OpenVMS:

To compile your programs, prog.c and progl.for, with the HDF library, mfhdf.olb, df.olb, and libz.olb
are required. The libjpeg.olb library is optional.

cc/DECC/STANDARD=VAXC/opt/nodebug/define=(HDF,VMS)/nolist/include=-<dir
for include> prog.c

fort progl.for

link/nodebug/notraceback/exec=prog.exe prog.obj, progl.obj, -<dir for lib>mfhdf/lib -
<dir for lib>df/lib, <dir for lib>libjpeg/lib, -<dir for lib>libz/lib, sys$library:deccrtl/lib

NOTE: The order of the libraries is important: mfhdf.olb first,followed by df.olb then libjpeg.olb and
libz.olb.

Windows NT / 95:
Using Microsoft Visual C++ version 4.x:
o Under Tools->Options, select the folder, Directories:
e Under "Show directories for", select "Include files".
e Add the following directories:
C:\MSDEWVAINCLUDE
C:\MSDEVWFC\AINCLUDE

C:<path to HDF includes>\INCLUDE

Under "Show directories for", select "Library files":
Add the following directories:

C:\MSDEV\LIB
C:\MSDEV\MFC\LIB

C:<path to HDF libs>\LIB

file://C:\HDF_99 HTMIL\HDF_LIB.html 10/27/99

done™ =~ 7 Page 10 of 12

&
=Ty
-
os)

e Under Build->Settings, select folder, Link:
¢ Add the following libraries to the beginning of the list of Object/Library Modules:

libsre.lib src.lib jpeg.lib zlib.lib xdr.lib getopt.lib
o The following libraries may (or may not) need to be included:

kernel32.1ib user32.lib gdi32.lib winspool.lib comdig32.lib advapi32lib
shell32.1ib ole32.1ib oleaut32.1ib uuid.lib odbc32.1lib odbecp32.lib

o Under Build->Settings, sclect folder C/C++:

o For the Preprocessor Definitions add: INTEL86
o The following were already there: WIN32, CONSOLE

Return to top

Low-level Interface

The so-called low-level interface provides software that enables the user to work with such file
features as memory, error handling, and storage. However, these features and the software are more
of interest to the experienced programmer and software developer not the HDF novice or beginner
interested in learning to read and write HDF files.

Information on the low-level interface can be found in the documentation listed in Section 2 Where
can I get additional and detailed information on HDF?

Return

Application Programming Interfaces (APIs)

Of more use to the average HDF user are the high-level or Application Programming Interfaces
(APIs). These APIs are sets of routines that can be called in the user's FORTRAN or C program and
which will allow the user to access, read, and write HDF files. There are APIs specifically created for
each of the different data types supported by HDF which allow the user to work with HDF files.

Further detail is provided in Section 4 - Methods of Working with HDF Files.

Return

file://C:\HDF_99 HTML\HDF LIB.html 10/27/99

HDF _LIB done Page 11 of 12

HDF Binary Distribution
On UNIX, VMS, and Windows NT/95, the binary distribution includes the pre-compiled libraries,

utilities, include files, man pages, and release notes. The binary distribution on the Macintosh does not
include the utilities.

The binaries are located in the following directories on the NCSA ftp server (fip.ncsa.uiuc.edu):
1. /HDF/HDF_Current/bin- Unix and VMS

2. /HDF/HDF_Current/zip- Windows NT/95
3. /HDF/HDF_Current/hgx- Macintosh

If you uncompressed the binaries for a supported platform, you would (in general) find the following
directories:

../bin - pre-compiled utilities
../include - include files

./lib - libraries

../man - man pages
./release_notes - release notes

The compressed source code can be found on the ftp server in /HDF/HDF_Current/tar. An
uncompressed version of the source code can be found in /HDF/HDF_Current/unpacked.

To compile and install the HDF libraries from the source code, please read through the READ and
INSTALL files in the top directory of the source code. In general, these are the steps you would take
to compile and install HDF:

Jconfigure -v

make >& comp.out

make test >& test.out

file://C:\HDF_99 _HTML\HDF_LIB.html 10/27/99

HDF_LIB done Page 12 of 12

make install

Return to top

file:/C:\HDF 99 HTML\HDF_LIB.html 10/27/99

File_methods done Page 1 of 6

Methods of Working with HDF Files

There are four basic ways or methods of working with (including reading and writing) HDF files.
These include two levels of programming interfaces within the HDF library, a set of command line
utilities also contained in the HDF library, and a wide range of browsing and visualization software
provided by both commercial vendors and non-profit organizations (NCSA, for example). Further
detail on each method is given below:

Low-level interface

High-level interface (APIs)

Command line utilities

HDF browsing and visualization tools/software

Both the command line utilities and the browsing and visualization tools provide easy-to-use methods
for HDF non-experts to work with HDF files. As shown above, the use of the command line utilities is
rather straight forward. However, neither the command line utilities nor tools provide the user with
the flexibility and means of working with the HDF files in such an encompassing fashion as permitted
in the High-level APIs. For this reason, as well as the fact that information and directions regarding
the use of the HDF tools are better provided by the Internet sites linked above, the following sections
of the tutorial will mainly concentrate on using the APIs to work with HDF files.

Previous Main Topic Next Main Topic

Return to Main Topics
Low-level interface

The low-level interface is mainly reserved for expert HDF programmers and software developers who
are interested in not only reading and writing HDF files, but also such features as error handling,
memory management, and storage. A lot of the features in this interface are unnecessary for the novice
HDF user. Another drawback is that routines/operation callable through this interface are only
available in C and not FORTRAN.

Return to top
High-level interface (APIs)

In this interface, Application Programming Interfaces (APIs) are specifically tailored for each type of
data (Images, Scientific Data arrays, etc.) supported by the HDF library. These APIs are callable
routines which will allow the user to access, read and write HDF files specifically for the type of data
they are interested in. Although it is necessary for the call of these APIs and associated routines to
occur in either a C or FORTRAN program, the programming is usually limited to a set of call
statements that access, open, operate (read, write, etc.), and terminate. All of the rest is taken care of

file://C:\HDF 99 HTML\File methods.html 10/27/99

File_methods done I Page 4 of 6

o SW API (SW/sw): The SW API is used for storing, retrieving, and manipulating time-ordered
data sets such as satellite swath data. The SW API is part of the HDF-EOS sub-library.

Return
List and description of command line utilities

HDF Command line utilities can be executed at the command level (prompt) similar to UNIX. The
following is a list of some of the command-line utilities available in the HDF library:

hdp - displays contents and data objects within an HDF file

hdf24to8 - converts 24-bit raster images to HDF 8-bit images
hdf8t024 - converts 8-bit raster images to HDF 24-bit images
hdfcomp - re-compresses an 8-bit raster HDF file

hdfls - lists basic information about an HDF file

hdfpack - compacts an HDF file

hdfunpac - unpacks an HDF file

hdftopal - extracts a pallete from an HDF file

hdftor8 - extracts 8-bit raster images and palettes from an HDF file
hdfed - HDF file editor

. paltohdf - converts a raw palette to HDF

r8tohdf - converts 8-bit raster image to HDF

ristosds - converts a series of raster image HDF files into an HDF file
. vshow - dumps out vsets from an HDF file

. jpeg2hdf - converts jpeg images to HDF raster images

. hdf2jpeg - converts HDF raster images to jpeg images

fp2hdf - converts floating point data to HDF floating point format and to HDF 8-bit raster
image format

18. vmake - create Vset structures from ASCII text

|pusnad
PRI UNH W~

et e e e Y vy
N RLN =

The hdp command line utility is a very helpful operator, especially for the average HDF user. HDP can
list the contents of HDF files at various levels and with different details. It can also dump the data of
one or more specific objects in the file.
Return
Publicly Available Software
Freely available software for viewing and browsing HDF files have been developed by both NCSA and
various other institutes, science or data centers, and businesses. We have broken these tools down into
three categories:

o Current NCSA Tools

e Older NCSA Tools (not updated to run with latest version of HDF)

e Non-NCSA Tools

Return

file://C:\HDF_99_HTML\File_methods.html 10/27/99

File_methods done = Page 5 of 6

Current NCSA Tools

The following are the most current and commonly used tools developed by NCSA for viewing and
browsing all types of HDF files:

1. The NCSA Java-based HDF Viewer (JHV) - Java based tool that allows the user to view the
contents of an HDF file.

2. The HDF WWW Scientific Data Browser - an interface program that reads HDF files by
accessing teh HDF library and can visualize or format the data (in HTML) on the web.

3. The Java HDF Server (JHS) - The java based program that calls the HDF library through the
Java interface and can access remote HDF files.

Older NCSA Tools

Although not updated to run with the current release of HDF (HDF 4.1r3), the following tools may
still be used to work with HDF files. All of these tools are available from the NCSA anonymous ftp
server

NCSA Collage - Collaborative visualization program
NCSA Polyview - Visualization and analysis of HDF files
NCSA Reformat - Converts to and from HDF files
NCSA X DataSlice - Manipulates 3-D HDF images

RIS

Non-NCSA Tools

The following tools have been developed independently from NCSA, but are still available in the
public domain:

1. The Data and Dimensions Interface (DDI) - Can extract, read, write and visualize large data sets
in HDF format.
2. Envision - Interactive system which provides for the management and visualization of large data
sets in HDF format.
3. HDF Browser - Created by Fortner Research to provide point-and-click access to data stored in
HDF. This includes viewing the data stored in arrays, images, etc.. and editing HDF files.
4. hdfv - An HDF read-only interface that is an HDF viewer with a GUI. Only supports
vgroup/Vdata data types.
5. LinkWinds - A visual data analysis and exploration system designed to rapidly and interactively
investigate large multivariate data sets (including HDF and HDF-EOS format).
SHARP - A viewer for MODIS Airborne Simulator (MAS) HDF data
ScaiAN - Scientific visualization and animation package.
VCS - Facilitates the selection, manipulation and display of scientific data. Supports the HDF
format for both reading and writing.
9. EOSView - An HDF file verification tool that allows the display of most HDF and HDF-EOS
data types.
10. The Data and Information Access Link (DIAL) - A server which provides tools for the
searching, browsing, and visualizing of HDF and HDF-EOS files through the WWW.
11. HDFLook - A viewer used to access and view HDF and HDF-EOS files, particularly raster
images and scientific data sets.

Hadbe IiSh

file:/C:\HDF_99 HTMLA\File_methods.html 10/27/99

Fiie_methods done o Page 6 of 6

12. IRVLDEO - A climate data library that helps in the writing of HDF files and the management of
data sets.

13. Webwinds - A platform independent system written in java that acts as an interactive
visualization tool for data in HDF and HDF-EOS format.

14. view_hdf - A visualization tool developed by NASA LARC that provides for the viewing,
plotting, and manipulation of HDF datasets.

Return
Commercial Software

Below is a partial list of some of the more powerful and more commonly used software packages for
working with HDF files:

1. AVS5/AVSExpress - Can read and write files in HDF format. Also includes a suite of data
visualization and analysis techniques/tools (3-D visualization, plots, etc...).

2. Data Explorer - General purpose software package for data visualization and analysis. The data
may be imported from HDF format.

3. IDL - A software package for the analysis and visualization of data. Includes advanced image
processing, interactive 2-d and 3-D graphics, and flexible date input/output.

4. Noesys - A desktop software program specifically designed to easily access, view, analyze and
archive data in the HDF format.

5. Plot - A package that can read, analyze and plot HDF data sets of column data using Windows,
Macintosh and UNIX.

6. HDF Explorer - A visualization program that reads and views data sets in HDF format

Return
Contributed Software

In addition to the above-mentioned software, also available from the NCSA anonymous fip server is a
collection of software routines and utilities developed by HDF users who wish to share their
knowledge and work with the HDF community. These software can be found in the directory
pub/hdf/contrib/ of the NCSA ftp server. Most of these "contributed” routines were developed with
specific platforms and operating systems in mind.

Below are a few examples:

readDF - reads HDF files into IRIS Explorer

fits2hdf - converts FITS files (another format) into HDF
iristohdf - converts SGI image format to HDF format
hdfxdis - directly displays HDF image on an X-server

These routines together with the name and address of the developer are free and publicly available to
all interested users of HDF.

Return

file://C:\HDF_99_HTMLJ\File_methods.html 10/27/99

ata_APldone =~ -~ - Page 1 of 2

SD API

The SD (Scientific Data) API is a collection of callable (from C or FORTRAN programs) routines
which will allow the user to, among other operations, create, write, and read HDF files containing
multi-dimensional arrays of scientific data. In subsequent sections, we will show how the SD API can
be used for reading and writing HDF data sets. For a complete listing of all the operations permitted in
the SD API, please see the HDF 4.1r3 User's Guide. As will be demonstrated shortly, FORTRAN (&)
routines in the SD API begin with the prefix "sf ("SD"). Data within a scientific data set may be of
the floating real or integer type. In HDF, and in the SD API, a scientific data set (or SDS) must
consist of a multi-dimensional array (called a SDS array), together with information on data type and
dimension record. The SD API allows the user to work simultaneously with more than one multi-
dimensional scientific data set (SDS) while the DFSD API is restricted to one multi-dimensional array.

e SDS Array
e Data Type
e Dimensions
Optional information

Previous Main Topic Next Main Topic

Return to Main Topics

SDS Array

The SDS array is the actual data itself, an n-dimensional array which contains the floating point or
integer values. Each SDS array has an SDS name (series of alphanumeric characters) that can either be
assigned by the calling statement with the FORTRAN or C program or automatically assigned by the
HDF library when the new data set (if writing) is created.

Return to top

Data Type
The SD API supports the following data types:

32-bit floating point
16-bit floating point
8-bit signed integers
16-bit signed integers
32-bit signed integers
8-bit unsigned integers
16-bit unsigned integers
o 32-bit unsigned integers

file://C:\HDF_99 HTML\Data_APLhtml 10/27/99

Data_API done Page 2 of 2

e Variable bit integers and floating point decimal values

As described later, the data type is defined in the accessing/creating function call statements within the
C and FORTRAN programs.

Return to top

Dimensions

The dimensions of an SDS array identify the shape and size of the array in question. This includes the
rank of the dimensions, which in HDF speak refers to the number of dimensions. One innovative
feature of HDF is that one, and only one, dimension of an SDS array may be of unlimited size and
referred to as an unlimited dimension.

Return to top

Optional information

When writing or creating an HDF file, the user may also wish to include information regarding the
data set or array. This must be done in the calling functions of the C or FORTRAN programs.

Attributes, either predefined by NCSA or user-defined, are text strings which provide metadata about
the file, data set, or dimension of interest. This includes information on what is in the file or individual
SDS arrays, and how the maker of the file/data intends for the data to be used or viewed. Like most of
the other routines mentioned above, attributes are defined in the function calls of the program.
Attributes are further covered in section 6.

Return to top

file:/CA\HDF_99 HTML\Data APLhtml 10/27/99

Attrib Page 1 of 2

Attributes and Metadata

The HDF library allows for several ways for the user to provide metadata (data about data)
information for the HDF file, data set or image to be written or read. This information is not a
requirement for HDF files. The most commonly used method or routine within the HDF library for
providing metadata are "Attributes" or text- strings which describe the HDF file, data set (SDS array)
or dimensions. There are two types of attributes used in HDF which can be defined in the user's calling

program:

¢ User-defined attributes
e Predefined attributes

Both the predefined and user-defined attributes may be accessed using the general attribute routines
for user-defined attributes provided by the HDF library. On the other hand, the predefined attributes
may only be accessed using the routines specifically tailored for the predefined attributes (see above).
As a result, in later sections, we will focus on using the general attribute routines developed for user-
defined attributes.

Previous Main Topic Next Main Topic

Return to Main Topics

User-defined attributes

User-defined attributes are optional information that can be given and attached to HDF files, scientific
data sets, and dimensions (only in the SD API). They are referred to, respectively, as file attributes,
array attributes, and dimension attributes. These attributes are at the discretion of, and to be defined
by, the user.

The SD interface uses the same functions to access all of the three types of attributes, with the
difference being the use and definition of the different identifiers (i.e., file ids for file attributes, SDS
ids for array attributes, and dimension ids for dimension attributes). After the proper identifier is
obtained, the user can then create and define his attribute (labels, formats, coordinate system, etc.).
The attributes in the GR interface work in a similar fashion with indentifiers provided for both the
interface or the image in question.

Return to top

Predefined attributes
file://C:\HDF_99 HTML\Attrib.html 10/27/99

Attrib - Page 2 of 2

Predefined attributes are attributes that use previously defined or reserved labels and data types. While
the user-defined attributes must be defined by the user, the predefined attributes need not be defined
and are already understood by the HDF library. However, in the SD API, predefined attributes can
only be assigned to scientific data sets (SDS) and dimensions (not files, like is possible with user-
defined attributes). In the GR API, there is only one predefined attribute, FILL _ATTR, which fills the
"empty" data of an image with default values.

There are seven main predefined attributes:

For labels: long_name

For units: units

For formats: format

For coordinate systems: cordsys

For Value ranges: valid_range

For Fill values: FILL_ATTR, FILL_VALUE

For Calibration: scale_factor, scale factor_err, add offset,

add_offset_err, calibrated nt

The predefined attributes can be accessed by the SD interface in the same general fashion as the user-
defined attributes or by using routines developed specifically for the predefined attributes. The
""general"" attribute routines are recommended in most cases.

Return to top

file://C:\HDF_99 HTML\Attrib.html 10/27/99

File_writing done Page 1 of 14

Writing a SDS to an HDF File

The following sections detail how a user may utilize the HDF library and the SD API within a
computer program to write a data file in HDF. As a teaching tool, this tutorial will concentrate on
using the FORTRAN programming language. However, examples of the appropriate C code will also
be given for certain steps.

Does the current version of HDF support your computer platform?
Downloading and installing of the HDF library

Are all libraries and programs properly linked and compiled?
Writing a short program to write data in HDF

Previous Main Topic Next Main Topic

Return to Main Topics

Does the current version of HDF support your computer platform?

As outlined in Section 3, the HDF library can not be run on just any available computer platform or
operating system. Before downloading the HDF library software, the user should make sure that the
current release of HDF supports his/her computer and operating system. Otherwise, the user will be
unable to work with the HDF library and files. There is also a possibility that previous releases of HDF
may support the Users computer platform while the latest version does not. In this event, the user may
wish to obtain the earlier software.

Return to top

Downloading and Installing of the HDF library

The HDF library and software is public domain software and available free to all users. The library and
code can be downloaded from the (NCSA anonymous ftp server). Directions on how to install the
HDF library can also be found at this location.

Return to top

Are all libraries and programs properly linked and compiled?
In order to run the HDF software, the library and the needed application routines and programs must

file://CAHDF_99 HTML\File_writing.html 10/27/99

File_writing done Page 2 of 14

first be properly compiled and linked. As of the current release of HDF (4.1r3), four separate libraries
must be compiled and linked. These are the libmfhdf.a, libdf.a, libjpeg.a, and libz.a libraries. Provided
below are examples of the command(s) that can be used for this action. It must be noted that the order
in which the libraries are linked is important and should not vary from the order shown below:

For C programs:

1. cc -0 <your program> <your program>.c \
2. -I<pathf for hdf include directory> \
3. -L<path for hdf libraries> -Imfhdf -1df -ljpeg -1z

For FORTRAN programs:

1. £77 -o <your program> <your program>.f\
2. -I<path for hdf include directory>\
3. -L<path for hdf libraries> -Imfhdf -1df -ljpeg -1z

For the various commands needed to link and compile the HDF library on each individual platform,
please see Section 3 "Compiling the HDF library".

Return to top

Writing a short program to write a scientific data set in HDF

Select a programming language

Make sure all include files are in place

Make all variable and parameter declarations

Open file containing existing non-HDF data set and store in array
Initialize access to the SD interface and open new HDF file

Define characteristics of new HDF data set(s)

Write existing data set/array to a new data array in a new HDF file
Optional operation; Provide metadata for HDF files or data sets
Terminate / close access to all files, data sets, and APls

Execute program

Return to top

Select a programming language

As mentioned previously, the HDF library and programs can only be run by using either the C or
FORTRAN programming language. This choice is up to the user depending on availability and the
language he or she feels most familiar and comfortable with. All SD API routines which allow the user
to work with scientific data sets (SDS) either have the "sf" prefix (FORTRAN) or the "SD" prefix (C).
Examples of the routines used to open, create, read, write, etc. SDS are given in the following
sections.

file://C:\HDF_99 HTML\File_writing.html 10/27/99

File writing done Page 3 of 14

Return
Make sure all include files are in place

In section 3 - The HDF Library: Software and Hardware , it was noted that a series of standard HDF
definitions and declarations of file access codes (i.e. read, write, etc.) and data types (i.e. integer,
character) must be included within the programs that the user writes to utilize the various application
routines. In the C programs, this is accomplished simply by adding the line #include "hdf.h" at the
beginning of the program. This line effectively includes all the needed constants and definitions from
the HDF software. When writing FORTRAN programs, this may also be done by simply adding an
include statement that brings in only the needed definitions and declarations (constants.f) from the
hdf.h header file. This is done by the following code: "include constants.f*. However, all FORTRAN
compilers (particularly the older ones) do not support the use of include statements. In this event, the
user must type in/declare all the constants and definitions found in the constants.f file. It is advised that
all declarations, whether through include statements or not, should be done at the beginning of the

program.
Example:
FORTRAN :

C DFACC RDONLY is defined in hdf.h
C if not available for FORTRAN then add
Parameter (DFACC RDONLY=1)

#include "hdf.h"
main()

Return

Make all variable and parameter declarations

As with any program, the scientist/user should declare and initialize all variables and parameters at the
beginning of the program. This includes all variables and arguments that will be used by the HDF
commands to follow. The variable and parameter declarations needed for each call will be provided in
the example boxes of the individual steps. These statements always belong at the top of the program.

Return

Open file containing existing non-HDF data set and store in array

Before writing any data into HDF, the actual data first has to be accessed within the program. As is
normally done in non-HDF applications, the file containing the data that the user wishes to convert

into HDF must first be opened. After opening the file, the user reads and stores the data into a multi-
dimensional array that can be accessed by the HDF commands.

file://C\HDF_99 HTMLA\File_writing.html 10/27/99

File_writing done o ' Page 4 of 14

For the purpose of this tutorial, the non-HDF data set will be read from an existing file called wind.dat
into a multi-dimensional real array called rwind(XL,YL) where XL= 30 and YL = 30.

Example:

C:

main{) {
FILE *infile;

const int XL = 30, YL = 30;
int i, 3
fleoat rwind[XL][YL];
infile = fopen("wind.dat™, "r"j;
for (i=0; i<XL; i++)
for (3=0; J<¥XL; j++)
fscanf(infile, ":f", rwind[i][3]);

}

FORTRAN:

real rwind (30, 30)
XL = 30
YL = 30
Open{unit=15, file='wind.dat',K form='formatted')
Do I=1,XL
Do j=1,YL
Read (15,25) rwind (I, J)
Enddo
Enddo

Return

Initialize access to the SD interface and open new HDF file
The first real HDF programming step actually accomplishes 2 things:

e Creates and opens a new HDF file
o Initializes and opens the SD interface.

This is done by the following command:

sd_id = sfstart(filename, access_mode) (FORTRAN)
or
sd_id = SDstart(filename, access mode); (C)

where

file://CAHDF_99 HTMLA\File_writing.html 10/27/99

File_writing done _ Page 5 of 14

sd_id = HDF file id returned by the sfstart/SDstart command
filename = the name of the new HDF file (character string)
access mode = Type of access required for this file

All available options for the access-mode argument are defined in the hdf.h header file mentioned
previously and need only to be identified for all C and most FORTRAN operations. All options begin
with the prefix "pracc_" and include:

DFACC_CREATE (File Creation Access)
DFACC_RDONLY (Read Access)
DFACC_RDWR (Read and Write Access)

As mentioned previously, these definitions are stated in the hdf.h header file.

In the event that the user's FORTRAN compiler can not handle include statements such as those found
in the hdf.h header file, the DFACC _ variable must be defined, along with its assigned value, at the
beginning of the program. This is done by a code line such as:

parameter (DFACC_RDONLY = 1) (For FORTRAN only)
For the purpose of this tutorial, the new HDF file will be called wind.hdf.
Example:

FORTRAN:

integer*4 sd id

integer sfstart

parameter (DFACC CREATE = 4)

sd id = sfstart(wind.hdf, DFACC CREATE)

C:
#include "hdf.h"
/* Includes all the access mode definintions */
int32 sd _id;
sd 1d = SDstart(wind.hdf, DFACC CREATE);
Return

Define characteristics of new HDF data set(s)

After initializing the SD interface and opening and assigning a file id (sd_id) to the HDF file to be
used, the next step is to define a new HDF Scientific Data Set (SDS) to which the existing non-HDF
data will be written. This is done by the following command:

sds id = sfcreate (sd id, name, number type, rank, dim sizes) (FORTRAN)

file://C:\HDF_99 HTML\File_writing.html 10/27/99

File writing done Page 6 of 14

or

sds_id = SDcreate (sd_id, name, number_ type, rank, dim sizes); (C)

It should be noted that sfselect/SDselect may also be used to write to a previously defined HDF data
set.

where

sds_id = HDF SDS array id returned by the sfcreate/SDcreate command

sd_id = the new HDF file id created in the previous step (sfstart/SDstart)
name = name of new SDS (in ASCII character string)

number type = data type of data set

This argument always takes the form of DFNT X, where X is the data type to be used. A list of all the
data types supported by the API can be found in the HDF User's Guide. For most of the data types,
8,16,32 and 64-bit types are supported. A few of the available options are provided below:

HDF Data Type Description

| DFNT FLOAT32 I 32 bit floating point real)
| DFNT DOUBLE || double precision reals ’
| DFNT_CHARS | 8 bit character type J
[DFNT_UCHARS [8 bit unsigned character type |
| DFNT_INT16 I 16 bit integer type]
| DFNT _UINT16 | 16 bit unsigned integer type]
| DFNT NINT16 [16 bit native integer |
| DFNT NUINT16 16 bit native unsigned integer |
| |

DFNT NFLOAT32 32 bit native floating point real

Similar to the DFACC _ argument, all data types are defined in hdf.h. Once again, for FORTRAN
compilers unable to access these include files, the DFNT _ argument, and its' assigned value, must be
defined at the beginning of the program using code like this:

parameter (DFNT_INT16 = 22} (taken from constants.f within the hdf.h file)
rank = number of dimensions in array to be written (integer)

This value is best specified at the beginning of the program along with the other various declarations
with a simple line of code:

rank =2, 3,....
file://C\HDF_99 HTML\File_ writing.html 10/27/99

File_writing done

dim_sizes = An array defining the size of each dimension of the data array (integer)

Page 7 of 14

As with the "rank" argument, this variable is best specified with the other variable declarations at the
top of the program. In FORTRAN, an example for a 2-D, 30 X 30 array would be:

dimsizes{(1l) = 30 (FORTRAN)

dimsizes (2) = 30

or
dimsizes[0) = 30; (C)
dimsizes[1l] = 30;

EXAMPLE: For an existing data set to be written as a 2-D array of 30 (x direction) by 30(y
direction), and as an 8-bit integer type, the following commands need to be used:

Example:

FORTRAN:

rank = 2 (FORTRAN)
dimsizes (1) = 30
dimsizes(2) = 30

sd

ra
di
di
sd

in
in
in
ra
XL
YL
di
di

s_id = sfcreate(sd_id, newarray_ 1, DFNT_INT8, rank, dimsizes)
or
nk = 2; (C)
msizes (0] = 30;
msizes[1l] = 30;
s_id = SDcreate(sd_id, "newarray 1", DFNT_INT8, rank, dimsizes);

teger*4 DFNT INTI16
teger sds id, rank
teger dims(2), sfcreate

nk = 2

= 30

= 30
ms(l) = XL
ms(Z) = YL

sds id = sfcreate(sd id, winds, DFNT INT16, rank, dims)

int32 sds id;

in
ra
XL

YL

di
di
sd

t32 dims[2], rank;
nk = 2;
= 30;
= 30;
ms[0] YL;
ms[1] XL;
s id = 3Dcreate({sd id, winds, DFNT INT16, rank, dims);

0ol

file://C\HDF_99 HTML\File_writing.html

10/27/99

File_writing done Page 8 of 14

Return

Write existing data set/array to a new data array in a new HDF file

After initializing the API and defining the new HDF file and new HDF SDS to be written to, the next
step 1s to actually write the existing non-HDF data into the HDF file by using the SDwritedata
(sfwdata) command. This command is used to write either all or part of the existing n-dimensional
data set (termed a "slab") into the sds_id array with the same number of dimensions. In addition, the
size of each dimension of the data "slab" must be the same or smaller then the corresponding
dimension of the sds_id. The SDwritedata/sfwdata command is used in the following fashion:

ret=sfwdata (sds_id, start, stride, edge, data) (FORTRAN)
or

ret=SDwritedata (sds_id, start, stride, edge, data); (C)

It should be noted that there are two versions of the write routine in FORTRAN, "sfwdata" is used for
numeric data while "sfwcdata" is used for writing character data

where

sds_id = the SDS id (identifier) determined and returned by using SDcreate
start = An array which identifies where in the SDS that the writing will begin

The start array identifies the location or position in the SDS where the writing of the data "slab” will
begin. This array must have the same number of dimensions (rank) as the SDS and can not be larger
(in each dimension) then the SDS array. The declaration of the start variables can be done at the top of
the program or just preceding the call of the sfwdata (SDwritedata) command. As an example, to

write the existing data set to the beginning of a new 2-dimensional SDS the following must be
specified:

start(l) = 0 (FORTRAN)
start(2) = 0
Or
start([0] = 0; {(C)
start({1l] = 0;

If the user wishes to begin writing the data at a location other then the beginning of the new data set,
say at a first dimension (X) of 15, the declarations would be:

start (1)
start (2)

15 (FORTRAN)
0

i H

file://C\HDF_99 HTML\File writing.html 10/27/99

File writing done o ' Page 9 of 14

start[0] = 15; (C)
start(l] =

stride = An array specifying the interval between written values in each dimension

The stride argument specifies, for each dimension, the interval between consecutive written values of
the data set. In other words, how many array locations are skipped with each writing of the data? Like
the start array, the stride argument is predefined before calling the sfwdata (SDwritedata) command,
either directly before the call or at the top of the program.

If the user does not wish to skip any array locations in a new 2-dimensional SDS, the following is to
be declared:

stride(l) = 1 (FORTRAN)
stride(2) = 1
or
stride(0) = 1; (C)
stride(l) = 1;

However, if the user wishes to skip every other X (dimension 1) location, the following would be
used:

stride(l) = 2 (FORTRAN)
stride(2) =1
Or
stride(0) = 2; (C)
stride(l) = 1;

edge = An array defining the number of data values to be written in each dimension

The edge array defines the number of data values/elements that will be written along each dimension
of the multi-dimensional SDS array. In plain terms, this argument defines the size of the data slab (all
or part of the data) to be written to the new SDS array and each dimension.

edge must be specified for each dimension of the data set and SDS array, and can not be larger then
the entire length of the newly defined (from sfcreate) array it is being written to.

The edge is affected by the stride. If stride = 2, then the edge will need to be divided by two, because
it will be writing to every other location along a dimension.

Similar to stride and start, the edge argument needs to be defined prior to the calling of the sfwdata
(SDwritedata) command, whether it be at the top of the program or directly before the routine call.

file://C:\HDF_99 HTML\File_writing.html 10/27/99

File_writing done

Page 10 of 14

As an example, most often, the user will wish to write the entire non-HDF data set into a new array
that starts from the beginning and does not contain any missing data or blanks. For a 2-dimensional
array of 30X30, read and stored into the data array "rwind", this can be done, in FORTRAN, by:

start(l) = 0
start(2) = 0
stride(l) =1
stride(2) =1

edge (1) = 30
edge (2) = 30
retn = sfwdata(sds_id, start, stride, edges, rwind)

Or in C by:
Start[0] = O;
Start(1l] = 0;
Stride[0] = 1;
Stride{l] = 1;

Edge{0] = 30;
Edge[1l] = 30;

retn = SDwritedata(sds_id, start, stride, edges, rwind);

data = The array or buffer of data to be written

The file containing this data should be opened at the beginning of the program and the data read in and

stored into the necessary arrays before beginning the HDF operations.
Example:

FORTRAN:

integer start(2), edges{2), stride(2)
integer retn, XL, YL
integer sfwdata
c Define the location, pattern and size of data set that
c will be written to.
XL = 30
YL = 30
start (1)
start (2}
edge (1)
edge (2)
stride (1l
stride (2)
o write the data
retn = sfwdata(sds id, start, stride, edges, rwind)

{1

0
0
L
L

~ 1

1

X
Y
=1

C: int32 retn;
int32 start[2], edges[2], stride[2];
XL, = 30;
YL = 30;
/*Define the location, pattern and size of the dataset*/
For {(i=0; i<rank; i++) {
start{i] = O;

file://C:\HDF_99 HTML\File_writing html

10/27/99

File_writing done Page 11 of 14

edge(i] dims[1];

edge (1) 30;

/* Write the stored data to "newarray". The 5th argument must be explicitly
a generic pointer to conform to the API definition for SDwritedata */

retn = SDwritedatal(sds id, start, NULL, edges, (VCIDP)newarray);

Return

Optional operation: Provide metadata for HDF files or data sets

Using the general attribute routines for user-defined attributes described in section 6, attributes can be
written and attached to the file itself, the data set, and the dimension in question. This is not required,
but up to the choice of the user.

After opening the file and obtaining the file id (sd_id) using the sfstart/SDstart command, the
following can be done

1) FILE ATTRIBUTES:

To assign attributes to a file, the following command is used:

SDsetattr (sd_id,attr_name, data type, count, value); { C)

sfsnatt (sd_id, attr_name, data type, count, value) (FORTRAN)

There are two FORTRAN versions of the routine, sfsnatt writes numeric attribute data while sfcatt
writes character attribute data.

where

sd_id= file identifier

attr_name = ASCII string containing the name of the attribute (i.e., "file conten

data_type data type of attribute values (i.e., DFNT_ INT32)

total number values/characters in the attribute

count

value text string or label

2) ARRAY ATTRIBUTES

After each data set identifier (sds_id) is obtained through the SDselect/sfselect command, the
following is used:

SDsetattr (sds_id, attr name, data_type, count, value); { C)

sfsnatt(sds id, attr name, data type, count, value) (FORTRAN)

file:/C:\HDF_99 HTML\File_writing.html 10/27/99

File_writing done ' Page 12 of 14

where

sds_id= data set identifier

rest as above

3) DIMENSION ATTRIBUTES

After getting the identifier for a dimension using the sfdimid/SDgetdimid command, the following is
used:

SDhsetattr (dim_id, attr_ name, data type, count, value); (C)
sfsnatt (dim id, attr name, data_type, count, value) (FORTRAN)
where

dim_id= Dimension identifier

rest as above

4) CLOSING ATTRIBUTES

After setting/writing the attributes, the user must terminate access to the data array (using the
SDendaccess/sfendacc commands) and the file and SD interface (using the SDend/sfend commands).

Example:
1) FILE ATTRIBUTES:

FORTRAN:

sd id = sfstart("wind.hdf", DFACC_RDWR}
retn = sfsattr(sdhid, "Contents of file™, DFNT CHAR8, 16, "horizontal winds

sd id=3Dstart ("wind.hdf", DFACC RDWR) ;
retn= SDsetattr (sd*id, "Contents of file", DFNT CHAR8, 16, "horizontal w

2) ARRAY ATTRIBUTES

FORTRAN:

sds id=sfselect (sd id, 0)
retn = sfsattr(sds id, "format", DFNT INT32, 4, "rg.2")

file://C:\HDF_99 HTML\File_writing, html 10/27/99

sds_id=SDselect(sdwid, 0);
retn= SDsetattr (sds_id, "format™, DFNT INT3Z, 4, "F§.2");

3) DIMENSION ATTRIBUTES

FORTRAN:

dim_id=sfdimid (sds 1d, 0)
retn = sfsattr(dim_id, "dim_metric", DENT CHAR8, 10, "meters/sec")

dim id=SDgetdimid {sds_1id,0};
retn= SDsetattr (dim 1d, "dim metric", DFNT CHAR8, 10, "meters/sec");

Return

Terminate / close access to all files, data sets, and APIs

After writing the data to the new SDS array within the new HDF file, it is necessary to terminate or
close access to the new data set in order to prevent any possible loss of data. This is done by the
following:

retn = sfendacc(sds_id) (FORTRAN)

or

1l

retn = SDendaccess(sds_id); (C)
In addition, the API called within the program must also be closed to prevent any data loss:
retn = sfend(sd_id) (FORTRAN)

or

retn SDend(sd_id); (C)

Example:

FORTRAN : integer sfendacc, sfend
retn = sfendacc(sds_id)

file://C:\HDF_99 HTML\File_writing.html 10/27/99

File writing done ‘ Page 14 of 14

retn = sfend{sd 1id)

C:
retn = SDendaccess (sds 1id);
retn = SDend(sd id];

Return

Execute program
Execute like a normal FORTRAN or C program.

Return

file://C:\HDF_99 HTML\File writing.html 10/27/99

HDF files done ‘ Page 1 of 2

Obtaining Information on Existing HDF Files

As mentioned previously, a single HDF file may contain more than one scientific data set (or images,
tables, etc.). Within the SD interface (and other interfaces for the various data types), there are
routines that can be called within short programs, C or FORTRAN, which help the user do the
following:

e Determine the contents of an HDF file
e Obtain information on individual data sets or images

Previous Main Topic Next Main Topic

Return to Main Topics

Determine the contents of an HDF file

Before reading an HDF file, it might be necessary for the user to determine the number of data sets
within the file, and the attributes of the file itself.

After initializing and accessing the Application interface (in this case, the SD and GR interfaces for,
respectively, scientific data sets and images (with associated paettes), this can be done using the
following statements:

SDfileinfo({sd _id, n_datasets, n_file_attr); (C)
GRfileinfo(gr_id,n_images,nfile_attr)

and
sffinfo(sd _id, n_datasets, n_file_attr) (FORTRAN)
mgfinfo(gr_id,n _images,n_file_attr)

where

sd_id= file id number

gr_id= GR interface identifier

n_datasets= Number of data sets within the file n_file_attr= number of file
n_images= number of images within the file

Return to top

Obtain information on individual data sets

Before reading a particular data set or image from an HDF file, the user may need to know the rank,
dimension sizes, data type, and number of attributes of the data array.

file://C:\HDF_99 HTML\HDF _files.html 10/27/99

HDF _files done Page 2 of 2

After the user has initiated and accessed the interface (for example, the GR interface for images and
the SD interface for data arrays) and selected the data set by using the sfselect/SDselect (data set) or
mgselct/GRselect (image) in a short FORTRAN (C) program, this information can be retrieved using
the following calls:

SDgetinfo (sds_id, name, rank, dim_sizes, num_type, attributes); (C)
GRgetinfo(ri_id,name,n_comps,data“type,interlaceﬁmode,dim_sizes,n_attrs)
and

sfginfo (sds_id, name, rank, dim sizes, num_ type, attributes) (FC
mgginf(ri_id,name,n_comps,data_type,interlace_mode,dim_sizes,n_attrs)

where

sds_id = data set id number

ri id = raster image id number

name = name of corresponding data set

rank = rank of corresponding data set

dim_sizes = dimensions of corresponding data set
num_type = data type of corresponding data set
data_type = data type of corresponding image
attributes = number of attributes of corresponding data set
n_comps = number of components

interlace mode = interlacing mode of data
n_attrs = number of sttributes

Return to top

file://C:\HDF_99 HTML\HDF _files.html 10/27/99

Reading Data from an HDF File S Page 1 of 10

Reading a Scientific Data Set from an HDF File

The following sections detail how a user may utilize the HDF library and the SD API within a
computer program to read a scientific data set from an HDF file. In this section, the tutorial will
concentrate on using the FORTRAN programming language and the SD API. However, examples of
the appropriate C code will also be given for certain steps. For the purpose of this tutorial, we are
choosing the example of reading an entire data array that is the first and only data set in the HDF file.
Similar to writing an HDF file, the user should follow these simple steps:

e Does the current version of HDF support your computer platform and operating system?
¢ Downloading and Installing the HDF library

o Are all libraries and programs properly linked and compiled?

e Writing a short program to read an HDF data set

Previous Main Topic Next Main Topic

Return to Main Topics

Does the current version of HDF support your computer platform and operating system?

As outlined in Section 3, the HDF library can not be run on just any available computer platform or
operating system. Before downloading the HDF library software, the user should make sure that the
current release of HDF supports his’her computer and operating system. Otherwise, the user will be
unable to work with the HDF library and files. There is also a possibility that previous releases of HDF
may support the Users computer platform while the latest version does not. In this event, the user may
wish to obtain the earlier software.

Return to top

Downloading and Installing the HDF library

The HDF library and software is public domain software and available free to all users. The library and
code can be downloaded from the NCSA anonymous ftp server (ftp://ftp.ncsa.uiuc.edu/). Directions
on how to install the HDF library can also be found at this location.

Return to top

Are all libraries and programs properly linked and compiled?

file://CA\HDF_99 HTMLJ\File reading.html 10/27/99

Reading Data from an HDF File S Page 2 of 10

In order to eventually run the HDF software, the library and the needed application routines and
programs must first be properly compiled and linked. As of the current release of HDF (4.1r1), four
separate libraries must be compiled and linked. These are the libmfhdf.a, libdf.a, libjpeg.a, and libz.a
libraries. Provided below are examples of the command(s) that can be used for this action. It must be
noted that the order in which the libraries are linked is important and should not vary from the order
shown below:

For C programs:

cc -o <your program> <your program>.c \
-I<pathf for hdf include directory>\
-L<path for hdf libraries> -lmfhdf -1df -ljpeg -1z

For FORTRAN programs:

f77 -o <your program> <your program>.f \
-I<path for hdf include directory>\
-L<path for hdf libraries> -lmfhdf -1df -ljpeg -1z

For the various commands needed to link and compile the HDF library on each individual platform,
please see Section 3:Compiling the HDF Library.

Return to top

Writing a short program to read an HDF data set

Select a programming language

Make sure all include files are in place

Make all variables and parameter declarations
Initialize access to the SD interface and open HDF file
Select data set to be read from the HDF file

Read an existing data set/array

Write non-HDF data to a file

Optional operation: Get and Read Metadata
Terminate/Close access to all files, data sets, and APls
Execute program

Return to top

Select a programming language

As mentioned previously, the HDF library and programs can only be run by using either the C or
FORTRAN programming language. This choice is up to the user depending on availability and the

file:/C:\HDF_99 HTML\File_reading.html 10/27/99

Reading Data from an HDF File N Page 3 of 10

language he or she feels most familiar and comfortable with.

Return

Make sure all include files are in place

Earlier, it was noted that a series of standard HDF definitions and declarations of file access codes (i.e.
read, write, etc.) and data types (i.e. integer, character) must be included within the programs that the
user writes to utilize the various application routines. In the C programs, this is accomplished simply
by adding the line #include "hdf.h" at the beginning of the program. This line effectively includes all
the needed constants and definitions from the HDF software. When writing FORTRAN programs, this
may also be done by simply adding an include statement that brings in only the needed definitions and
declarations (constants.f) from the hdf.h header file. This is done by the following code: "include
constants.f". However, all FORTRAN compilers (particularly the older ones) do not support the use
of include statements. In this event, the user must type in/declare all the constants and definitions
found in the constants.f file. It is advised that all declarations, whether through Include statements or
not, should be done at the beginning of the program.

Return

Make all variables and parameter declarations

As with any program, the scientist/user should declare and initialize all variables and parameters at the
beginning of the program. This includes all variables and arguments that will be used by the HDF
commands to follow. The variable and parameter declarations needed for each call will be provided in
the example boxes of the individual steps. These statements always belong at the top of the program.

Return

Initialize access to the SD interface and open HDF file
The first real HDF programming step actually accomplishes two things:

o Opens the existing HDF file
o Initializes and opens the SD interface.

This is done by the following command:

sd_id

sfstart (filename, access_mode) (FORTRAN)

or

sd id SDstart (filename, access mode) { C)

file://C:\HDF 99 HTML\File reading.html 10/27/99

Reading Data from an HDF File Page 4 of 10

where

sd_id = HDF file id returned by the sfstart/SDstart command
filename = the name of the existing HDF file (character string)
access_mode = Type of access required for this file

All available options for the access-mode argument are defined in the hdfh header file mentioned
previously and need only to be identified for all C and most FORTRAN operations. All options begin
with the prefix "DFACC " and include:

DFACC_CREATE (File Creation Access)
DFACC_RDONLY (Read Access)
DFACC RDWR (Read and Write Access)

As mentioned previously, these definitions are stated in the hdf.h header file.

In the event that the user's FORTRAN compiler can not handle include statements with the header file
(hdfh), the DFACC_ variable must be defined, along with its assigned value, at the beginning of the
program. This is done by a code line such as:

parameter (DFACC_RDONLY = 1) (For FORTRAN only)

Example:

FORTRAN:

integer*4 sd id

integer sfstart

parameter (DFACC RDONLY = 1)
sd_id=sfstart("wind.hdf", DFACC_RDONLY)

C:

#includehdf.h"

int32 sd _id;

Sd‘id=5dstart {("wind.hdf", DFACCﬁRDONLY) ;
Return

Select data set to be read from the HDF file

After initializing the SD interface and opening and assigning a file id (sd_id) to the HDF file to be
used, the next step is to select the HDF Scientific Data Set (SDS) which will be read. This is done by
the following command:

sds_id = sfselect (sd_id, sds_index) (FORTRAN)
or

sds id = SDselect (sd id, sds index) (C)

file://C:\HDF_99 HTML\File reading.html 10/27/99

Reading Data from an HDF File Page 50f 10

where

Example:

FORTRAN:

Return

sds_id = HDF SDS array id returned by the sfselect/SDselect command
sd_id = the HDF file id created in the previous step (sfstart/SDstart)
sds_index = index number of data set within file (i.e. 0 = ¢

integer sds id, sds index, sd_1id

integer sfselect

sds_index = 0 represents the first data set
sds_id = sfselect(sd id,0)

int3Z =d id, dims[2];
dims[0] YL;

dims[1] AL;

sds_id = Sdselect(sd_id,0);

ol

Read an existing data set/array

After initializing the API and selecting the HDF file and HDF SDS to be read to, the next step is to
actually read the existing HDF data by using the SDreaddata (sfrdata) command. This command is
used to read either all or part of the existing n-dimensional data set (termed a "slab") into the sds_id
array with the same number of dimensions. In addition, the size of each dimension of the data "slab"
must be the same or smaller then the corresponding dimension of the sds_id. The SDreaddata/sfrdata
command is used in the following fashion

ret=sfrdata (sds_id, start, stride, edge, data) (FORTRAN)
or

ret=SDreaddata (sds_id, start, stride, edge, data); (C)

It should be noted that there are two versions of the read routine in FORTRAN. The sfrdata routine
reads numeric scientific data while sfrcdata reads character scientific data.

where

sds_id = the SDS id (identifier) determined and returned by using SDcreate or SDselect
(sfcreate/sfselect)

start = An array which identifies where in the SDS that the reading will begin

The start array identifies the location or position in the SDS where the reading of the data "slab" will

file://C:\HDF 99 HTML\File_reading.html 10/27/99

Reading Data from an HDF File Page 6 of 10

begin. This array must have the same number of dimensions (rank) as the SDS and can not be larger
(in each dimension) then the SDS array. The declaration of the start variables can be done at the top of
the program or just preceding the call of the sfrdata (SDreaddata) command. As an example, to read
the existing data set to the beginning of a new 2-dimensional SDS the following must be specified:

start(l) = 0 (FORTRAN)
start(2) = 0
or
start[0] = 0; (C)
start[1l] = 0:

If the user wishes to begin reading the data at a location other then the beginning of the data set, say at
a first dimension (X) of 15, the declarations would be:

start (1) = 15 (FORTRAN)
start(2) =0
or
start[0] = 15; (C)
start (1] = 0;

stride = An array specifying the interval between written values in each dimension

The stride argument specifies, for each dimension, the interval between consecutive written values of
the data set. In other words, how many array locations are skipped with each reading of the data. Like
the start array, the stride argument is predefined before calling the sfrdata (SDreaddata) command,
either directly before the call or at the top of the program.

If the user does not wish to skip any array locations in a new 2-dimensional SDS, the following is to
be declared:

stride(l) = 1 (FORTRAN)
stride(2) =1
or
stride{0] = 1; (C)
stride[l] = 1;

However, if the user wishes to skip every other X (dimension 1) location, the following would be
used:

stride (1) = 2 (FORTRAN)
stride(2) =1
or
stride{0] = 2; (C)
stride[1l] = 1;

file://C:\HDF_99 HTML\File_reading.html 10/27/99

Reading Data from an HDF File Page 7 of 10

edge = An array defining the number of data values to be read in each dimension

The edge array defines the number of data values/elements that will be read along each dimension of
the multi-dimensional SDS array. In plain terms, this argument defines the size of the data slab (all or
part of the data) to be written to the new SDS array and each dimension.

The parameter edge must be specified for each dimension of the data set and SDS array, and can not
be larger then the entire length of the array being read.

Similar to stride and start, the edge argument needs to be defined prior to the calling of the sfrdata
(SDreaddata) command, whether it be at the top of the program or directly before the routine call.
The file containing this data should be opened at the beginning of the program and the data read in and
stored into the necessary arrays before beginning the HDF operations.

As an example: Most often, the user will wish to read an HDF file which contains one data set
(winddata), which starts from the beginning and does not contain any missing data or blanks.

For a 2-dimensional array of 30X30, read and stored into the data array "testdata", this can be done
by:

start (1) = 0 {FORTRAN)
start(2) = 0
stride{l) =1
stride(2) =1

edge (1) = 30
edge (2) = 30
retn = sfrdata(sds_id, start, stride, edges, winddata)

or
start[0] = O; (C)
start[1l] = 0;
stride{0] = 1;
stride(0] = 1;

edge[0] = 30;
edge[l] = 30;
retn = SDreaddata({sds_id, start, stride, edges, winddata):;

Example:

For reading the entire data set from an HDF file which contains only one 2-D array

FORTRAN:
integer start({2}, edges(2), stridel(2)
integer retn sfrdata

C Define the location, pattern + size of data to be read
YL = 30
XL = 30 start(l) = 0 start(2) = 0 stride(l) = | stride(2) = 1 edg
edge (2) = YL
retn = sfrdata(sds _id, start,stride,edges,winddat)

C:

/* Define the location, pattern + size of data to be read */
YL = 30;
XL = 30;

file://C:\HDF_99 HTML\File_reading html 10/27/99

Reading Data from an HDF File T Page 8 of 10

dims[0] = YL;
dims{[1l] = XL;
start[0] = 0;
start[1l] = 0O;
stride[0] = 1;
stridell] = 1;
edge{0] = dims[0];
edge[l] = dims[1];
a |

retn = SDreaddat sdsﬁid, start, stride, edges,winddat);

Return

Write non-HDF data to a file
Using standard FORTRAN and C statements for writing, the non-HDF data is written into a new file

(storage). In addition, the user may wish to print out all or parts of the HDF data set to view the data
or as a check of the procedure/operation.

Return

Optional operation: Get and Read Metadata

After opening the HDF file using the sfstart/SDstart, the first step is to see if the file or data sets do
indeed contain attributes. This is done by using the following command:

attr_index
attr index

SDfindattr (sd_id, attr name); {C)
sffattr (sd_id, attr_name) (FORTRAN)

where

attr_index = valid attribute index returned if attribute exists
sd_id = file identifier
attr name = name of attribute (i.e.,Contents of file")

If there is a attribute index, the name, data type (num_type), and count (number of characters) of the
attribute can be obtained:

retn= SDattrinfo(sd_id, attr_ index, attr_name, num type, count); (
retn= sfgainfo (sd_id, attr_index, attr_name, num_ type, count) (FORTRAN)

After completing these operations, the attributes can be read using the following:

file://C:\HDF 99 HTML\File reading.html 10/27/99

Reading Data from an HDF File Page 9 of 10

retn= SDreadattr (sd_id, attr_index, buffer); (C)
retn= sfrattr (sd _id, attr_index, buffer) (FORTRAN)

where
buffer is allocated to hold the attribute data

The above steps can also be followed for each data set within the file by getting the data set id (sds_id)
of the data, finding a particular attribute (i.e.,"Units") and getting and reading the data.

Example:

FORTRAN:
sd id=sfstart ("wind.hdf", DFACC _RDONLY)
attr index= sffattr (sdﬁid,"file_contents")
retn= sfgainfo (sd id, attr index, "file contents", data type, count]

retn= sfrattr (sd:id, attr:index, buffer)
and
sds id=sfselect (sd id, 0}
attr index= sffattrﬂ(sds_id,"units")
retn= sfgainfo (sds id, attr index, "units", data type, count)
retn= sfrattr (sds id, attr:index, buffer)
C:
sd id=3Dstart ("wind.hdf", DFACC_RDONLY) ;
attr index= SDfindattr (sd_id,"lee;contents");
retn= SDattrinfo ({sd id, attr_index,"fileﬁcontents", data type, count);
retn= SDreadattr (sd _id, attr index, buffer);
and N
sds_id=sDselect (sd id, 0);
attr index= sphfindattr (sds_id, "units");
retn= SDattrinfo (sds id, attr index,"units", data type, count);
retn= SDreadattr (sds id, attf*index, buffer});
Return

Terminate/Close access to all files, data sets, and APIs

After writing the data to the new SDS array within the new HDF file, it is necessary to terminate or
close access to the new data set in order to prevent any possible loss of data. This is done by the
following:

1

retn = sfendacc(sds_id) (FORTRAN)

or

retn SDendaccess (sds_id) (C)
In addition, the API called within the program must also be closed to prevent any data loss:

retn = sfend(sd id) (FORTRAN)

file://C:\HDF 99 HTML\File reading.html 10/27/99

Reading Data from an HDF File Page 10 of 10

or
retn = SDend(sd_id) { C)

Example:

FORTRAN:
integer sfendacc, sfend
retn = sfendacc(sds 1id)

retn = sfend(sd id)

il

retn = SDendaccess{sds _1id};
retn = SDend(sd id};

Return
Execute program

Execute like a standard FORTRAN or C program.

Return

file://C:\HDF 99 HTMLJ\File reading.html 10/27/99

Browsing done ' Page 1 of 1

Browsing and Visualizing HDF Data

With the recent explosion of data volumes, numerous visualization and browsing tools have been
developed which allow users to quickly view the contents of datasets created elsewhere. This has
proven especially beneficial for users of HDF.

In fact, many visualization tools have been created specifically with HDF in mind. The NCSA
anonymous ftp server provides a set of free software that enables the user to visualize and browse
HDF files. Tools include theJAVA-based HDF Browser and the Scientific Data Browser. In addition,
the following are available but have not been updated to run with the current version of HDF: NCSA
Collage, NCSA Datascope, NCSA XDataSlice, and NCSA Polyview.

Besides NCSA, there are other sites and centers that also provide public domain (free) software that
can be used to browse and visualize HDF files. This software includes, among others: Link Winds,
GRASS, FREEFORM, VISTAS, ImageMagick, and Envision. Visualization tools and software such
as LinkWinds and EOSVIEW can be used for working with HDF-EOS type data (point, swath and
grid data sets).

Finally, there are also commercial (for a fee) software packages that can be used to work with and
browse HDF files. These include: DataExplorer, Spyglass, PV-Wave, Wavefront, IDL, AVS, IRIS
Explorer, Transform, and ER Mapper.

Please see Section 4: HDF Browsing and Visualization Tools for further detail, including internet
address, on the above software.

Previous Main Topic Next Main Topic

Return to Main Topics

file://C:\HDF_99 HTML\Browsing.html 10/27/99

Example Programs Page 1 of 7

Example Programs

The following is a list of sample programs that illustrate how the HDF library, and the SD API, can be
used to work with HDF files. The example programs are given in the FORTRAN programming
language. However, the detailed steps for all languages are the same. Only the syntax code particular
to each language should be different.

Writing an SDS in HDF

Writing Attributes in HDF

Writing the SDS and attributes in HDF
Reading an HDF file

Reading HDF attributes (files and data sets)

wevters N Popic Next Main Topic

Return to Main Topics

Writing an SDS in HDF

FORTRAN:

PROGRAM WRITDATA

integer*4 sd_id, sds_id, rank

integer*4 XL, YL

integer dims(2), start (2), edges (2), stride (2)
integer i, j, k, retn

integer sfstart, sfcreate, sfwdata, sfendacc, sfend
real rwind (30, 30)

DFACC_CREATE and DFNT_INT16 are defined in hdf.h but may have
to be defined within the program for certain FORTRAN compilers

[eNeESNe!

integer*4 DFACC_CREATE, DFNT_INTI16
parameter (DFACC CREATE = 4, DFNT INT16=22)
rank = 2

XL 30

YL 30

Create and open a new HDF file and initiate the SD interface

QOO

sd id = sfstart('wind.hdf', DFACC CREATE)

file://C\HDF_99 HTML\Examples.html 11/2/99

Example Programs

QO

aaoaaaa

QOO0 QOO

QO QO

[oNeNe!

12

Define the rank (number of dimensions) and dimensions (size) of the

HDF Scientific Data Set (SDS) to be created.

dims (1)
dims (2)

XL
YL

1

Create the HDF SDS (sfselect would be used if writing to an
existing HDF file or data set)

sds_id = sfcreate(sd_id, 'winds', DFNT_INT16, rank, dims)
Open and read the existing non-HDF data set into an array (rwind)

Open (unit=10, file='wind.dat', form='formatted')
Do j = 1,30

Read (10, 12) (rwind(i, j),i = 1,30)

Format (30(f4.1,1x))
Enddo

Define where in the file to write the data set (start--location),
the pattern of the data (stride--skip any values??), and the size
of the data set (edges) to be written to. This is done for each
dimension. start(x) = 0 is for writing at the beginning of the
newly created SDS and stride(x) = 1 signifies that no data is to
be skipped in the writing.

start(l) =0
start(2) = 0
edges (1) = XL
edges (2) = YL
stride(l) =1
stride(2) =1

Write the the stored data (in the array rwind) to the new SDS
retn = sfwdata(sds_id, start, stride, edges, rwind)

Terminate access to the array

retn = sfendacc(sds_id)

Terminate access to the SD interface and close the HDF file
retn = sfend(sd_id)

Stop
End

Return to top

Writing Attributes in HDF

FORTRAN:

PROGRAM WRITEATT

integer*4 sd id, sds id, dim id, retn

file://C:\HDF 99 HTMIL\Examples.html

Page 2 of 7

11/2/99

Example Programs Page 3 of 7

integer dims(2), start(2), edges{(2), stride(2)

integer sfstart, sfselect, sfdimid, sfscatt, sfendacc, sfend

C
c DFACC_RDWR, DFNT_INT16 and DFNT_CHAR8 are defined in hdf.h but
C may have to be defined within the program for certain FORTRAN
C compilers
cC
integer*4 DFACC RDWR, DFNT_INT32, DFNT_CHARS
parameter (DFACC RDWR = 3, DFNT_INT16 = 22, DFNT CHAR8 = 4)
C
C Open the HDF file, 1initiate the SD interface, and get the
C identifier for the file
C
sd_id = sfstart('wind.hdf', DFACC_RDWR)
C
C Set an attribute the describe the contents of the file
C
retn = sfscatt({sd_id, 'file_contents’', DFNT_CHAR8, 15,'lidar_LOS winds')
C
C Get the identifier for the first data set (in this example, the
C only data set)
C
sds_id = sfselect(sd _id, 0)
cC
C Set an attribute(s) for the data array itself. In this example, the
C units of the data are defined
C
retn = sfscatt(sds_id, 'units', DFNT_CHARB, 13, 'units = m/sec"')
C
C Terminate access to the data array
C
retn = sfendacc(sds_id)
cC
C Terminate access to the SD interface and close the HDF file
o
retn = sfend(sd id)
Stop
End

Return to top

Writing the SDS and attributes in HDF

FORTRAN:

PROGRAM WRITESDS
integer*4 sd_id, sds_id, rank, dim id
integer*4 XL, YL
integer dims(2), start(2), edges(2), stride(2)
integer i, j, k, retn
integer sfstart, sfcreate, sfwdata, sfendacc, sfscatt, sfend
real rwind (30, 30)
C DFACC CREATE, DFACC RDWR, DFNT CHAR8 and DFNT INT16 are defined

file://C:\HDF_99_HTMIL\Examples.html 11/2/99

Example Programs

QOO0

[eNeEeNe! Qaoan a0

aaQa

QOO0

OO0 [oNeNeNe! [oNeNe]

Q00

12

in hdf.h but may have to be defined within the program for certain

FORTRAN compilers

integer*4 DFACC_CREATE, DFNT_INT16, DFNT_CHAR8, DFACC_RDWR

Page 4 of 7

parameter (DFACC_CREATE = 4, DFACC_RDWR = 3, DFNT_INT16 = 22, DFNT_CHAR8 = 4)

rank = 2
XL = 30
YL = 30

Create and open a new HDF file and initiate the SD interface

sd_id = sfstart('wind.hdf', DFACC_CREATE)

Define the rank (number of dimensions) and dimensions (size) of the

HDF Scientific Data Set (SDS) to be created.

XL
YL

dims (1)
dims (2)

Create the HDF SDS (sfselect would be used if writing to an
existing HDF file or data set)

sds_id = sfcreate(sd id, 'winds', DFNT INT16, rank, dims)

Open and read the existing non-HDF data set into an array (rwind)

Open {unit = 10, file = 'wind.dat', form = 'formatted')

Do j=1,30
Read (10, 12) (rwind(i, j),i=1,30)
Format (30(f4.1,1x))

enddo

Define where in the file to write the data set (start--location),
the pattern of the data (stride~-skip any values??), and the size
of the data set (edges) to be written to. This is done for each
dimension. start(x) = 0 is for writing at the beginning of the
newly created SDS and stride(x)=1 signifies that no data is to be
skipped in the writing.

start(l) = 0
start(2) = 0
edges (1) = XL
edges (2) = YL
stride(l) = 1
stride(2) =1

Write the the stored data (in the array rwind) to the new SDS
retn = sfwdata(sds_id, start, stride, edges, rwind)

For writing attributes, set an attribute the describe the
contents of the file

retn = sfscatt(sd_id, 'file contents', DFNT_CHARS, 15,'lidar_LOS winds')

Set an attribute(s) for the data array itself. In this example, the

units of the data are defined
retn = sfscatt{sds_id, 'units', DFNT_CHAR8, 13, 'units = m/sec')

Terminate access to the data array

file://C\HDF_99 HTML\Examples.html

11/2/99

Example Programs

aaa

retn = sfendacc(sds_id)
Terminate access to the SD interface and close the HDF file
retn = sfend(sd_id)

Stop
End

Return to top

Reading an HDF file
FORTRAN:
PROGRAM READDATA
c
integer*4 sd_id, sds_id
integer*4 XL, YL
integer start(2), edges(2), stride(2)
integer i, j, k, retn
integer sfstart, sfselect, sfrdata, sfendacc, sfend
real rwind (30, 30)
C
c DFACC_RDONLY is defined in hdf.h but may have to be defined
C within the program for certain FORTRAN compilers
c
integer*4 DFACC_RDONLY parameter (DFACC_RDONLY = 1)
C
C MAX NC_NAME (maximum # of characters) and MAX VAR DIMS (maximum
C # of dimensions) are defined in netcdf.h but may have to be defined
C here.
C
integer*4 MAX NC_NAME, MAX VAR _DIMS
parameter (MAX NC NAME = 256, MAX VAR DIMS = 32)
integer dims(MAX VAR DIMS)
XL = 30
YL = 30
C
Cc Open the HDF file and initiate the SD interface
cC
sd id = sfstart('wind.hdf', DFACC_RDONLY)
C
c Select the first data set in the file (In this example, the only
C dataset).
C
sds_id= sfselect(sd_id, 0)
c
C To read from the data set, define the location (start--where in the
C file), the pattern (stride--skip any values??),and the size(edges)
c of the data. This is done for each dimension. start(x) = 0 is for
C reading at the beginning of the file and stride(x) = 1 signifies
C that no data is to be skipped in the reading.
C

dims (1) = XL
dims (2) = YL
start(l) = 0
start(2) = 0
stride(l) =1

file://C:\HDF_99 HTML\Examples.html

Page 5 of 7

11/2/99

Example Programs

stride(2) = 1
edges{l) = dims (1)
edges (2) = dims(2)
C
C Read the array dataset
C
retn = sfrdata(sds_id, start, stride, edges, rwind)
C
C Optional - Print out data (ASCII) read from the HDF file
C In this example we are writing to the screen (*)
C
Do j =1, 30
write(*,12) (rwind(i,j),i=1,30)
12 format (30(£4.1,1x))
enddo
cC
C Terminate access to the array
c
retn = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the HDF file
C
retn = sfend(sd_id)
Stop
End

Return to top

Reading HDF attributes (files and data sets)

FORTRAN:

PROGRAM READATTR

integer*4 sd_id, sds_id, units_buffer

integer attr_index, data type, count, retn

character attr name * 13

character char buffer * 20

integer sfstart, sfrnatt, sfrcatt, sfgainfo, sffatr, sfselect
integer sfendacc, sfend

DFACC RDWR is defined in hdf.h but may have to be defined
within the program for certain FORTRAN compilers

oNeNeRe]

integer*4 DFACC_RDWR, DFACC_RDONLY
parameter (DFACC _RDWR = 3, DFACC RDONLY = 4)

Open the HDF file and initiate the SD interface

a0

sd_id = sfstart('wind.hdf', DFACC_RDONLY)

Select the first data set in the file (In this example, the only
dataset) .

Qoo

sds_id= sfselect(sd_id, 0)

Find the the attribute which describes the contents of the file
(usually 'file contents')

file://C:\HDF_99 HTML\Examples.html

[eNeNe!

Page 6 of 7

11/2/99

Example Programs

[eNeNe! QOO [eNeXNe! [oNeNeKe! OHe NSNS QO [oNeNe!

[eNeKe!

attr_index = sffattr(sd_id, 'file contents')

Get information about the file attribute

retn = sfgainfo(sd_id, attr_index, attr_name, data_type, count)
Read the file attribute data

retn = sfrcatt(sd_id, attr_index, char_buffer)

Read the attributes for the first data set. First step is to get
the identifier.

sds_id = sfselect(sd_id, 0)

Find the attribute which defines the units of the data set
('units')

attr_index = sffattr(sds_id, 'units')

Get information about the data set attribute

retn = sfgainfo(sds_id, attr index, attr name, data type, count)
Read the data set attribute data

retn = sfrcatt({sds_id, attr_index, units_buffer)

Terminate access to the array

retn = sfendacc(sds_id)

Terminate access to the SD interface and close the HDF file
retn = sfend(sd_id)

Stop
End

Return to top

file://C\HDF_99_HTML\Examples.html

Page 7 of 7

11/2/99

HDF Laboratory ‘ Page 1 of 2

HDF Laboratory

questions
Section I: General Background: HDF and the HDF Library 1-9
Section II: Methods of Working with HDF Files 10-16
Section III: Scientific Data Model 17-20
Section IV: Attributes and Metadata 21-25

Section V: Using the SD API to write an Existing Data Set in HDF 26-36
Section VI: Querying /and Reading an HDF File 37-39

Lab Directions

Begin Lab

Previous Main Topic

Return to Main Topics
Lab Directions

The question and answer section of the tutorial was developed in Java script and is best viewed using
Microsoft Internet Explorer 4.0/5.0 and the latest release of Netscape navigator. When navigating
through the tutorial, individual questions will be loaded on the same window and will be controlled by
the "Previous question” and "next question” buttons. However, new windows will be opened when the
user attempts to look at the preview material for each question and thus allowing the user to toggle
back and forth from the question and the material. To exit the tutorial, just click the "back” button
from the main question screen and this will bring the user back to the Laboratory menu. When done
with a "preview" window, simply close out the window and return to the question window/screen.

In this section we provide a series of questions designed for the users of the tutorial to test themselves
on how well they understood the material presented in the tutorial and, more importantly, to gauge
how comfortable they feel with HDF.

The questions more or less follow the order of the topics covered in the "Lecture” component of the
tutorial. The Laboratory menu provides a breakdown by section of the various questions, and allows

the user to select which topics they would like to focus their attention on.

file://C:\HDF_99_HTMI.\Lab.html 10/28/99

HD

=
=

aboratory Page 2 ot 2

Each question contains the question itself, a set of possible answers, navigation buttons ("Next
Question", "Previous Question", "Lab Menu", "End Lab", "Submit Answer") and, most importantly, a
feature which allows the user to review material pertaining to the question before answering or after
answering incorrectly. This is done by selecting the "Preview Material" button. Since some users will
like to take the "test" without any help and others will like to review material before answering
(particularly those who may have skipped directly to the Laboratory), it is up to the individual user to
decide how to proceed.

It should be noted that, in many cases, there is more than one correct answer for each individual
question. The user is allowed to select more than one response and will only receive an "Answered
Correctly" response if ALL correct responses have been selected.

To help the users qauge their understanding of HDF and how well they are answering the questions, a
"performance gauge" is provided in the upper right hand corner of each question. This quage provides
both a numerical (i.e. 7 of 11) and graphical (sliding color bar for 0 - 100%) representation of user
performance. The "score" found in the performance gauge only reflects the users' INITIAL answer to
each question.

The user's performance in the Laboratory is further diagnosed in a Progress Report reached by
clicking on the performance quage. Included in this report are:

number of questions answered correctly
number of questions answered incorrectly
number of questions left unanswered

list of questions answered correctly

list of questions answered incorrectly

list of questions left unanswered

Return to top

file://C:\HDF 99 HTML\Lab.html 10/28/99

= HDF labmalmy Mlcmsofl Inlemet Fxplorel

fumwsermuw

) 2 A a

Forward i Refresh Home Seasch Favorites

Mtha

IE] hitp: //cycione. swacom!meteaolowflﬂ.fumd/ﬁuesﬁon htmi

J
| ok
|
I

Links E]Matuweh &) Chennel Guide €] Customiza Links &]Intemet Explorer Nows @emsw

*mmwaunamaumw mma
‘mmhnwmmm ' ,

anene
€ Faus

I [T (@ irtomet zone

HDF Laboratory - Microsoft Inteinet Explmfﬂ

Eﬂﬁﬁmﬁo&vubﬁab

j .‘».@IG&}QEQQ{
|
|

Forward Stop Refsh Home ‘Saxch Flm Hﬂ
IE http: //cyclone. swa.com/meteorology/hdf Autorial/Guestion. himl

Liks &]BestoftheWeb & Channel Guide @j&mw @msmn.m €] intamet Start

5..

‘ssctmnnnussxm 10

mwmmummm»mummﬂw
hmmammm

r Tmmdﬁqmmlmdmem&mmm
rmmmm S

I~ Visuskzation software.

™ Allof the above.

Pmiedeuid]

Pceviupﬁuedim

&1 Applet started [[[(@ intemet 20ne

2 HDF Laboraloly chmsoil Inlemet Explmel

[Bo E® Vow Go Fgwobes oo
@ . 0=+ .0 B B @ @ I Qp’l 3
‘Back - Foward Stop Reflesh Home | Seach Favotet Histoy Channels | Fubceen Mal

Address ré hitp: //cyclone. swa. com/meteorclogy/hdi Atutorial/Q uestion. htmi

J
jum Ejaudtaweh €] Chennel Guide éjamm: € Jintomet Explorer News & intomet Start

SECTION' QUESTION 12 o -::]

1of2

Mﬁhd‘&zmmmﬁj&m: um |

Provious uesion|

rﬂﬂ‘smdhecalodhanwﬂmammuomdwhm
T~ API's ue available in both C and Forran. ’
rmmammraammmwﬂm
I"'Aloﬂhubova

€] Applet stasted-

[[[(@ ntemetzone

3 HDF Laboratory - Microsaft Intemnet Explorer

| Po E® Yow Go Favodes Heb
-+ .92 88 &3 80T
| Back Fenward Reltesh - Home Semch Favortes History Cl'm Fullkcreen al
Addiest [€) hitp: //cyclone. swa. com/meteorology/hd Autorial/ Question him

J
|| Links @€)Best of theWeb €] Channel Guide ch\mun &)intemet Explorer Nows €] Intemet Start

SECTION® QUESTION 14 |

S ,j’;g? :

™ alow the user to cal HDF applcation routines oulside of C or Fortran programs.
I~ allow the user to perform common operations on HDF files.
I~ e avadable for a actions and routines. covered by the APta.

ProviowMateial | Subm Anwert)|

& Applet started - [T [(@8 tntemet zone

-3 HDF Laboratory - Microsolt Internet Explorer

Fie E&RR VYiew Go Favortes Hep

| .

| & = .Q B A QA & I ¥ S
| dens

J

Fouward Stop | Refesh Home Search Favorites History Fullscrsen Mal
@ hitp: //cyclone. swa.com/meteorclogy/hdf/tutorial/Question. htmi
Liks &)BestoftheWeb &]Channel Guide &]Customize Links & Jintemet Explorer News &]intemet Star

SECTION IV QUESTION 22 -

S of

Users of HDF can provide matadata on theil dala ons theough attrbutes
proviously definad by the HDF lbrary.

€ Tiue
" Fahe

Povoutissial | submtaraects)|

—— et |

€] Applet started [[&intemet zone

3 HDF Laboratory - Microsoft Inteinet Explorer

| Fe E Yew Go Favodes Heb

.o+ A } Q &
Back Fomyard Stop Refiesh Home

Address @ hitp: //cyclone. swa.com/meteorology/hdf /tutorial/Question. htmi

Links €)BestoithoWeb {&]Channel Guide &]CustomizeLinks §]intemet Explorer Nows & intemet Start

Progress Report for the HDF ,Laboratory

Numbex of questions answered comectly: 5. - 1206%
Number of questions answered incormectiy: 3 0%
Numbes of questions lsft unanswered: 3 79.0%

Below is the st of questions answered correctiy.
2.3.4,9.16,

Belownhﬂdmmedmmw
5,7.8,

Below is the st of questions left unanswerad:

]@

chh?mubsﬂmm

1,6.10.11,12,13,14,15,17.18,15, 20, 21, 22.23.24 25.25 27.28,29,30. 31,

32,33,34,35,.36,37. 38,39, :
Rebunto Lab

|€] Applet started l

[[[& intemet zone

ATTACHMENT D

An HDF Tutorial for
Beginners: EOSDIS Users
and Small Data Providers
(Microsoft Word Version)

by

Mr. Steven Greco
Simpson Weather Associates
Charlottesville, VA

(In Fulfillment of NASA Contract NAG5-1961)

November 12, 1999

10.

11.

12.

13.

Main Topics

Tutorial Overview

An Introduction to HDF

The HDF Library: Software and Hardware
Methods of Working with HDF Files
Scientific Data API

Attributes and Metadata

Writing an HDF File

Obtaining Information on Existing HDF Files

Reading an HDF Data File

Example Programs
Browsing and Visualizing HDF Data
Laboratory (Question and Answer)

Acronym List

An HDF Tutorial for Beginners: EOSDIS Users
and Small Data Providers

l. Tutorial Overview

1.1 Purpose of the Tutorial

The NASA ESDIS project selected the Hierarchical Data Format (HDF) as the common
data format of choice for standard product exchange and distribution. As
developed by the National Center for Supercomputer Applications (NCSA), the HDF
format is supported by a collection of software routines and applications needed
to work with data sets in HDF. This set of software, referred to as the HDF
library, is available in the public domain. To facilitate the exchange of data
and data products to be generated as part of the upcoming EOS missions, a sub-
library or library extension of HDF, called HDF-EOS has also been developed to
deal specifically with some types of satellite and field campaign data products
that will be routinely generated.

While there are many advantages to the use of HDF, a key to its' success as a
common data format and software library may be dependent upon expanding the
general user and science communities' awareness, knowledge, and comfort with HDF
and HDF-EOS. In particular, it is the individual investigators, academia
(students through researchers), the educational community (K-12 needs), and the
general public that many times do not have the required knowledge, nor the
resources to commit to obtaining this knowledge, to work with HDF files.

In response to this need, the NASA ESDIS project has funded the creation of this
on-line HDF tutorial geared towards HDF beginners. The purpose of this tutorial
is to provide the HDF non-expert, particularly potential future users of EOS
data, with the necessary information to enable one to successfully write data
sets into HDF and to also read data from an existing HDF file. This information
will include, but not be limited to, sections on the basics of HDF and HDF
files, the required software/hardware, the various ways of working with HDF
files, a review of HDF commands and operations, and a step by step instruction
on writing programs to work with HDF.

Some of the information presented here can also be found in further detail
throughout several of the excellent HDF reference guides and manuals (more on
this in Section 2 - An Introduction to HDF) written by NCSA. However, the goal
of this tutorial is to present, in a concise and easy to understand form, only
the information needed to help the HDF novice to read and write basic HDF files.
Furthermore, the HDF library has been designed to work with many different types
of data (arrays, images, etc.) and to carry out both simple and complex
operations on data sets. As a teaching tool, this tutorial will concentrate on
only one data type (scientific data arrays) and the simpler operations such as
reading, writing, and browsing entire data sets.

Another tutorial dealing with HDF and the HDF library has been developed by NCSA
(http://hdf.ncsa.uiuc.edu/tutslects.html). The current tutorial contains much
more of the basic information of HDF and is geared to the HDF beginner or

novice. Though there are many places of overlap between the two tutorials, they
seem to compliment each other in providing information for all types of HDF
users.

1.2 How to Use the Tutorial

In support of a contract to the NASA ESDIS project, this HDF tutorial has been
designed by Simpson Weather Associates, Inc. (SWA) with the goal of teaching the
novice HDF users, especially potential users of EOSDIS and future EOS data
products, how to use the HDF library to read and write HDF files. The tutorial
has been constructed in two parts. First is what we call the "Lecture" component
where we present what we think is the information necessary for a novice user to
learn what HDF is, what it can be used for, and how to apply it in practice.
Included in this "Lecture" material is a step-by-step outline detailing what the
user must do to successfully read or write an HDF file.

The second component of the tutorial is a question and answer section (what we
call the "Laboratory") which tests the user's knowledge of HDF, concentrating on
the information needed by the novice or average HDF user to work independently
with the HDF library to read and write HDF files.

We realize that the familiarity and knowledge level of the users of this
tutorial will span a wide range. As a result, we think it should be up to the
users to decide how they wish to learn and navigate through the tutorial.
However, we do advise that those with very little or no knowledge of HDF should
first preview and study the lecture material before testing themselves with the
Laboratory section.

1.3 Future Plans of the Tutorial

The current version of this HDF tutorial concentrates on the latest release of
the HDF library (HDF 4.1r3 as of July 1999) and how to use it for reading and
writing HDF files containing scientific data arrays. Future versions (ongoing
work) of the tutorial will be expanded to include additional operations
supported by the HDF library and how they can be used to work with various other
data types such as raster images, binary tables, and palettes.

While these modifications are being made, parallel work is being conducted on
tutorial components devoted to working with the point, swath and grid data sets
expected to be produced by EOS instruments, and supported by the HDF-EOS sub-
library.

In addition, a new experimental version of HDF, called HDF5, has been designed.
This new library was designed to address the main drawbacks of HDF4,
particularly the inability to deal with large data sets. Once HDF5 is officially
accepted, a tutorial(s) will be needed.

2. An Introduction to HDF

2.1 What is HDF?

HDF, which stands for Hierarchical Data Format, is a common data format that has
been developed to aid scientists and programmers in the storing, transfer and
distribution of data sets and products created on various machines and with
different software. HDF has been selected by the NASA ESDIS project as the
format of choice for the standard product distribution that will be part of the
Earth Observing System Data and Information System (EOSDIS).

In addition, HDF also refers to the collection of software, application
interfaces, and utilities that comprise the HDF library and allows users to work
with HDF files. The HDF library is discussed in detail in Section 3 - The HDF
Library: Software and Hardware.

2.2 Features of HDF

HDF is a multi-object file format for the sharing and storing of scientific
data. Some of the most important features of HDF are the following:

1) Self-describing: For each data object in an HDF file, there is also
information (or metadata) about the data type, size, dimensions and
location found within the file itself.

2) Extensibility: HDF is designed to accommodate future (new) data
types and data models.
3) Versatility: Currently, HDF supports six different data types and

provides software and applications to read and write these data
types in HDF.

4) Flexibility: HDF lets the user group, store, and read/write
different data types in the same file or in more than one file.

5) Portability: HDF software is mainly platform independent and can be
shared across most computer platforms (all platforms have not been
tested).

6) Standardization: HDF standardizes the formats and descriptions of
many types of commonly- used data types (i.e., arrays, images,
etc.).

7) HDF is available in the public domain.

2.3 What types of data does HDF support?

As of the latest release of HDF (HDF4.1 release 3 as of July 1999), the HDF
library supports the working with raster images, color or gray scale palettes,
multi-dimensional arrays, text strings, and statistical data (in the form of
tables). The HDF library supports the following data types:

1. Scientific Data sets -- Multi-dimensional integer or floating point
arrays
2. Vertex Data (Vdata and Vgroups) -- Multi-variate data stored as

records in a table
3. General Raster (Gr) -- Raster images

4. Annotation -- Text strings to describe files and parts of files
(metadata)

5. 8-bit Raster images

6. 24-bit Raster images

7. Palette -- B-bit color palettes (accompany images)

In addition to these data types supported by the base HDF library, a sub-library
called HDF-EOS has been developed to support various data types anticipated from
the Earth Observing System (EOS) satellite missions. The HDF-EOS data models
include point data, satellite swath data, and gridded data.

As mentioned in the Welcome section, this tutorial will concentrate on the
Scientific Data Model as a means of teaching the essentials of HDF. More
information on the other data models can be obtained in the various documents
(particularly the HDF User's Guide) provided by NCSA through their anonymous ftp
server or World Wide Web home page.

2.4 Which version of HDF should I use?

The most current version or release of HDF is the best place to begin. As of
July 1999, the current version of the HDF library is HDF 4.1r3. An extension of
the HDF library, called HDF-EOS, is based on this version of HDF and is designed
specifically to work with data products anticipated from the upcoming EOS
satellite missions. The current tutorial will focus on the releases (i.e., rl,
r2 or r3) of HDF4.1l. One feature of HDF4 that is important, especially to
experienced users of HDF, is the backward compatibility of HDF. That is,
HDF4.1r3 is compatible with earlier versions such as HDF4.1lrl and the data sets
that were generated.

It should be noted that an experimental version of HDF, called HDF5, has also
recently been developed to address the shortcomings of HDF4. This new HDF
library includes simpler source codes, more consistent and fewer data models,
and the ability to work with large data sets (> 2GB). However, although plans
call for the HDF-EOS interface to be based on HDF5 at a later date, it is only
in the experimental/prototype stage. HDFS5 and the associated software will not
be covered in this tutorial. The user is directed to NCSA's HDF5 Page
(http://hdf.ncsa,uiuc.edu/HDF5/) for detailed information.

2.5 Where can I get additional and detailed information on HDF?

The best sites or locations to find detailed information on all aspects of HDF
are the NCSA HDF Information Server available through the Internet
(http://hdf.ncsa.uiuc.edu/) and the NCSA anonymous ftp server
(ftp://ftp.ncsa.uiuc.edu/HDF/HDF/Documentation). Inquiries should be sent to
hdfhelp@ncsa.uiuc.edu.

The following documents and information can be obtained through the sources
mentioned above:

- HDF 4.1 r3 Reference Manual

- HDF 4.1 r3 Users Guide

- HDF Specifications and Developers Guide v3.2 (mainly for the
programmers/developers)

- HDF Newsletters

- HDF Frequently Asked Questions (FAQ)

- Java Products

- Frequently Asked Questions about Java and HDF

- Release Notes and Man Pages provide information on items that are
not covered in the above documents

- HDF software contributions from non-NCSA users

In addition, users may wish to join the hdfnews mailing list (by emailing
ncsalist@necsa.uiuc.edu and placing subscribe hdfnews in the body of the message)

for discussions and updates on HDF.

3. The HDF Library: Software and Hardware

The HDF library is a collection of software routines that provides two types of
interfaces which allow the user to work with HDF files. A brief capsule
describing these interfaces is provided below:

Low-level Interface - The so-called low-level interface provides software that
enables the user to work with such file features as memory, error handling, and
storage. However, these features and the software are more of interest to the
experienced programmer and software developer not the HDF novice or beginner
interested in learning to read and write HDF files.

Information on the low-level interface can be found in the documentation listed
in Section 2 - Where can I get additional and detailed information on HDF?

Application Programming Interfaces (APIS)- Of more use to the average HDF user
are the high-level or Application Programming Interfaces (APIs). These APIs are
sets of routines that can be called in the user's FORTRAN or C program and which
will allow the user to access, read, and write HDF files. There are APIs
specifically created for each of the different data types supported by HDF,
which allow the user to work with HDF files.

Further detail is provided in Section 4 - Methods of Working with HDF Files.

In addition, the HDF library also provides a set of command-line utilities that
allow the user to work with HDF files outside of the interfaces and within the
command level (such as UNIX) of a terminal session. Outside of the HDF library,
there are also a large number of browsing and visualization software packages
(both free and commercial) that allow the user to look at all types of HDF
files. These two methods will be discussed later in the tutorial.

3.1 Obtaining and installing the HDF library

The HDF library and utilities are public domain software and are freely
available, along with documentation, from the NCSA anonymous ftp server. The
latest release of the HDF library can be downloaded from
ftp://ftp.ncsa.uiuc.edu/HDF/HDF/HDF Current. Associated documentation and
reference material describing the library and its' installation can be obtained
from ftp://ftp.ncsa.uiuc.edu/HDF/HDF/Documentation, The source code of the HDF
library and utilities are available with each "release" of HDF and can be
downloaded free of charge from this ftp site. The files are available in various
forms to support users of PCs, Macs, etc.

Unfortunately, the HDF library may not be accessed by every computer platform.
Following sections list the platforms and operating systems on which the latest
release of HDF has been tested.

NCSA provides a binary distribution for those platforms supported by HDF. For
platforms that are not specifically supported, the HDF source code is provided.

On UNIX, VMS, and Windows NT/95, the binary distribution includes the pre-
compiled libraries, utilities, include files, man pages, and release notes. The
binary distribution on the Macintosh does not include the utilities.

The binaries are located in the following directories on the NCSA ftp server
(ftp.ncsa.uiuc.edu):

/HDF/HDF_Current/bin- Unix and VMS
/HDF/HDF Current/zip- Windows NT/95
/HDF/HDF_Current/hgx- Macintosh

If you uncompressed the binaries for a supported platform, you would (in
general) find the following directories:

../bin - pre-compiled utilities
../include - include files
../lib - libraries

../man - man pages

../release notes - release notes

The compressed source code can be found on the ftp server in
/HDF/HDF_Current/tar. An uncompressed version of the source code can be found in
/HDF/HDF_Current/unpacked.

To compile and install the HDF libraries from the source code, please read
through the READ and INSTALL files in the top directory of the source code. In
general, these are the steps you would take to compile and install HDF:

./configure -v

make >& comp.out

make test >& test.out
make install

3.2 Installing the HDF library

How do you install HDF on your computer system? Detailed directions for
configuring and installing the latest version of HDF can be found in the README
and INSTALL files located in the HDF Current unpacked subdirectory of the NCSA
anonymous ftp server (ftp://ftp.ncsa.uiuc.edu/HDF/HDF/HDE Current/unpacked).

In order to use the HDF library through C and FORTRAN programs, the user's
computer must have either a C or FORTRAN library linked with the HDF library.

For those users who wish to work with HDF using Java, Version 2.3 of the HDF
Java Products has been released as part of the latest release of the HDF
library. Included in these products is the Java HDF Interface (JHI) for the HDF
library. The JHI provides an interface to all the functions of the HDF library
and may be used by any Java application to work with HDF files.

The necessary Java source code must be downloaded from
ftp://ftp.ncsa.uiuc.edu/HDF/HDF/HDF Current/unpacked/java-hdf.

These are the only languages which can call HDF routines (more detailed
information in "Programming languages supporting the HDF library).

3.3 Computer platforms supporting the HDF library

The latest version of the HDF library is HDF 4.1 Release 3. Although the list of
machines supported by the HDF library increases with every incremental version
or release of HDF, it is still not possible to work with HDF files on every
single platform or operating system. As of the current release in July 1998, the
HDF library is currently supporting the following computer platforms and
operating systems:

Sund4 (Solaris 2.6, SunOS 4.1.4)
SGI-Indy (IRIX v6.5)
SGI-PowerChallenge

SGI-Origin (IRIX64 v6.5-64/n32)
HP9000/735 (HP-UX 9.03)

HP9000/755 (HP-UX B.10.20)

Exemplar (HP-UX A.10.01)

Cray T90 (CFP, IEEE)

Cray C90

IBM SP2 (v4.2.1)

DEC Alpha/Digital (Unix v4.0)

DEC Alpha/OpenVMS (AXP v6.2 and 7.1)
VAX Open/VMS (v6.2)

IBM PC~Intel Pentium (Solarisx86, Linux (elf), FreeBSD)
PowerPC (C only)

PCs with Windows NT/95

Windows NT/95

T3E (unicosmk 2.0.2.106)

As of July 1999 and the latest release of the HDF library (4.1r3), the only
platforms that support the Java HDF interface (JHI) are:

Sun4 (Solaris 2.5)

SGI-Indy (IRIX5.3)

IBM PC - Intel Pentium (Solarisx86 (2.5) and Linux (elf) 2.0.27)
Windows NT/95

Earlier versions or releases of the HDF library can still be used but may not be
compatible with the platforms listed above.

3.4 Programming languages supporting the HDF library

As of the current release of HDF (HDF 4.1r3), the only programming languages
which are supported by the HDF library are C and FORTRAN. Although the HDF
library code is only written in C, the library provides both a FORTRAN and Java
Interface which converts the code to C and allows the user to call the HDF
routines and applications inside FORTRAN programs and Java scripts. This
conversion will automatically take and requires no further action by the user.

Other then the obvious differences between the programming languages, the main
difference between using the different languages is the naming convention, or
names used for each HDF function. In addition, to use and compile HDF
application routines through C programs, an HDF header file (hdf.h) containing

10

standard HDF data type and file access code (i.e. read, write) definitions,
declarations and prototypes for the API routines must be called or included
(#include "hdf.h") at the beginning of the program. These header files are not
permitted in all FORTRAN versions and the needed information must be written
into the FORTRAN code (taken from the HDF library file "constants.f” within
"hdf.h").

One of the features of the HDF library is that it creates free format FORTRAN
include files during the "make" process on UNIX platforms. This allows FORTRAN
90 programs to use HDF include files. The FORTRAN 90 files are designated by the
".f90" file extension.

Another recent update to the HDF library is the inclusion of the Java HDF
Interface (JHI) as part of HDF version 4.1r3. The JHI provides an interface to
all HDF functions and must be obtained and installed in order to use Java to
work with HDF files. Please see "Obtaining and installing the HDF library" for
further details.

3.5 Compiling the HDF library

The following examples (for UNIX platforms) illustrate the general method of
compiling the HDF library and application programs:

C programs

cc -o <your programé> <your program>.c -I<path for hdf include
directory> -L<path for hdf librariesé> -lmfhdf -1df -ljpeg -1z
FORTRAN programs

£f77 -o <your programé> <your program>.f -I<path for hdf include
directory> -L<path for hdf librariess> -lmfhdf -1df -ljpeg -1z

Specific examples for various platforms are provided below. If the platform you
use is not listed, the general instructions should be followed.

The latest platform related information can be found on the NCSA anonymous ftp
server at HDF4.lr3/release notes/compile.txt.

3.6 INSTRUCTIONS FOR SPECIFIC PLATFORMS
3.6.1 Cray C90 or YMP:
C:

cc -0 -s -o <your program> <your program>.c -I<path for hdf
include directoryé> -L<path for hdf libraries> -lmfhdf -1df -1ljpeg -1z

FORTRAN:

cf?77 -0 1 -s -o <your program> <your programé>.f -I<path for hdf
include directoryé> -L<path for hdf libraries> -lmfhdf -1df -ljpeg -1z

3.6.2 Dec Alpha/Digital Unix:

11

C:

cc -0limit 2048 -stdl -o <your programé> <your programé>.c —-I<path
for hdf include directory> -L<path for hdf libraries> -lmfhdf -1df -
ljpeg -1z

FORTRAN:

£77 —-o <your program> <your programé>.f -I<path for hdf include
directorys> -L<path for hdf libraries> -lmfhdf -1df -ljpeg -1z

3.6.3

To compile your programs, prog.c and progl.for, with the HDF library, mfhdf.olb,
df.olb, and libz.olb are required. The libjpeg.olb library is optional.

cc/opt/nodebug/define=(HDF,VMS) /nolist/include=<dir for include> prog.c
fort progl.for
link/nodebug/notraceback/exec=prog.exe prog.obj, progl.ocbj, -<dir for

lib>mfhdf/1lib -<dir for lib>df/lib, <dir for
lib>libjpeg/lib, -<dir for lib>libz/lib, sys$library:vaxcrtl/lib

NOTE: The order of the libraries is important: mfhdf.olb first, followed by
df.olb then libjpeg.olb and libz.olb.

3.6.4 Exemplar:

C:

cc —ext -nv -no <your program> <your program>.c -I<path for hdf
include directoryé> -L<path for hdf libraries> -lmfhdf -1df -ljpeg -1z

FORTRAN:

fc -sfc -72 -o <your program> <your programé>.f -I<path for hdf
include directoryé> -L<path for hdf libraries> —-lmfhdf -1df -ljpeg -1z
3.6.5 FreeBSD:

C:

gcc -ansi -Wall -Wpointer-arith -Wcast-qual -Wcast-align -Wwrite-strings -
Wmissing-prototypes -Wnested-externs -pedantic -02 -o <your programé>
&1lt;your program>.c -I<path for hdf include directoryé> -L<path for
hdf libraries> -lmfhdf -1df -ljpeg -1z

FORTRAN:

£77 -0 -o <your programé> <your program>.f -I<path for hdf include

12

directory> -L<path for hdf librariesé> -1lmfhdf -1df -ljpeg -1z

3.6.7 HP - UX:
C:

cc -Ae -0 -o <your program> <your program>. -I<path for hdf
include directory> -Lé<path for hdf librariesg> -lmfhdf -1df -ljpeg -1z

FORTRAN:

£f77 -0 -o <your program> <your program>.f -I<path for hdf include
directorys> -L<path for hdf libraries> -1lmfhdf -1df -ljpeg -1z

3.6.8 IRIX 5.3:

C:

cc —ansi -0 -s -o <your program> <your programé>.c -I<path for hdf
include directory> -L<path for hdf libraries> -1lmfhdf -1df -1ljpeg -1z

FORTRAN:

£f77 -0 -s -0 <your program> <your programé>.f -I<path for hdf
include directoryé> -L<path for hdf librariesé> -lmfhdf -1df -ljpeg -1z
3.6.9 IRIX 6.x with 64-bit mode:

C:

cc —ansi -64 -mips4 -0 -s -o <your program> <your program>.c -
I&1lt;path for hdf include directory> -L<path for hdf libraries> -lmfhdf
-1df -ljpeg -1z

FORTRAN

£77 -64 -mips4 -0 -s -o <your programé> <your programé>.f -I<path
for hdf include directoryé>\ -L<path for hdf libraries> -lmfhdf -1df -
ljpeg -1z

3.6.10 IRIX 6.x with n32-bit mode:

C:

cc -ansi -n32 -mips3 -0 -s -o <your program> <your programé>.c -
I<path for hdf include directory> -L<path for hdf librariesé> -1lmfhdf
-1df -ljpeg -1z

FORTRAN:

£77 -n32 -mips3 -0 -s -o <your programé> <your programé>.f -I<path

for hdf include directory> -L<path for hdf libraries> -lmfhdf -1df -
lijpeg -1z

13

3.6.11 Linux A.OUT And ELF:
C:

gcc -ansi -o <your programé> <your programé>.c -I<path for hdf
include directoryé> -L<path for hdf librariesé> -1lmfhdf -1df -ljpeg -1z

FORTRAN {(a.out only):

£77 -o <your program> <your program>.f -I<path for hdf include
directory> -Lé<path for hdf librariess> -lmfhdf -1df -ljpeg -1z

3.6.12 Solaris:

The -1lnsl is necessary in order to include the xdr library.

C:

cc -¥Xc -x02 -o <your program> <your programé>.c -I<path for hdf
include directoryé> -Lé<path for hdf librariesé> -1lmfhdf -1df -l1jpeg -1z -
L/usr/lib -1lnsl

FORTRAN:

£77 -0 -o <your programé> <your programé>.f -I<path for hdf include
directory>-L<path for hdf libraries> -~lmfhdf -1df -1ljpeg -lz -L/usr/lib
-1nsl

3.6.13 Solaris x86 (C only):

The -1lnsl is necessary in order to include the xdr library.

gcc -ansi -0 -o <your program> <your programé>.c -I<path for hdf
include directoryé> -L<path for hdf libraries> -lmfhdf -1df -ljpeg -1z -
L/usr/lib -1lnsl

3.6.14 SP2 (AIX):

C:

xlc -qlanglvl=ansi -0 -o <your program> <your programé>.c -I<path
for hdf include directoryé> -L<path for hdf libraries> -lmfhdf -1df -
ljpeg -1z

FORTRAN:

£77 -0 -o <your programé> <your programé>.f -I<path for hdf include

directory> -L<path for hdf libraries> -lmfhdf -1df -ljpeg -1z

3.6.15 Sunos:

14

C:

gcc -ansi -o <your program> <your program>.c -I<path for hdf
include directorys> -L<path for hdf librariess> -lmfhdf -1df -ljpeg -lz

FORTRAN:

£77 -f -o <your programé> <your program>.f -I<path for hdf include
directorys>-L<path for hdf libraries> -lmfhdf -1df -ljpeg -1z

3.6.16 t3d:

C (only):

cc -Tcray-t3d -X1 -o <your programé> <your program>.c -I<path for
hdf include directory> -L<path for hdf librariessgt; -lmfhdf -1df -ljpeg -
1z

3.6.17 VAX OpenVMS:

To compile your programs, prog.c and progl.for, with the HDF library, mfhdf.olb,
df.olb, and libz.olb are required. The libjpeg.olb library is optional.

cc/DECC/STANDARD=VAXC/opt/nodebug/define=(HDF, VMS) /nolist/include=-<dir for
include> prog.c

fort progl.for
link/nodebug/notraceback/exec=prog.exe prog.obj, progl.obj, -<dir for

libs>mfhdf/lib -<dir for libs>df/lib, <dir for libsgt;libjpeg/lib, -
<dir for lib>libz/lib, sys$library:deccrtl/lib

NOTE: The order of the libraries is important: mfhdf.olb first, followed by
df.olb then libjpeg.olb and libz.olb.

3.6.18 Windows NT / 95:

Using Microsoft Visual C++ version 4.x:

Under Tools->Options, select the folder, Directories:

Under "Show directories for", select "Include files".

Add the following directories:

C:\MSDEV\INCLUDE

C:\MSDEV\MFC\INCLUDE

C:<path to HDF includesé>\INCLUDE

Under "Show directories for", select "Library files":
Add the following directories:

C:\MSDEV\LIB
C:\MSDEV\MFC\LIB
C:<path to HDF libs>\LIB

Under Build->Settings, select folder, Link:

Add the following libraries to the beginning of the list of Object/Library
Modules

libsrc.lib src.lib jpeqg.lib zlib.lib xdr.lib getopt.lib

The following libraries may (or may not) need to be included
kernel32.1lib user32.1lib gdi32.1ib winspool.lib comdig32.1lib advapi32lib
shell32.1lib ole32.1ib oleaut32.lib uuid.lib odbc32.lib odbccp32.1lib
Under Build->Settings, select folder C/C++:

For the Preprocessor Definitions add: INTEL86

The following were already there: WIN32, CONSOLE

15

16

4. Methods of Working with HDF Files

There are four basic ways or methods of working with (including reading and
writing) HDF files. These include two levels of programming interfaces within
the HDF library, a set of command line utilities also contained in the HDF
library, and a wide range of browsing and visualization software provided by
both commercial vendors and non-profit organizations (NCSA, for example).
Further detail on each method is given below:

- Low-level interface

- High-level interface (APIs)

- Command line utilities

- HDF browsing and visualization tools

Both the command line utilities and the browsing and visualization tools provide
easy-to-use methods for HDF non-experts to work with HDF files. As shown below,
the use of the command line utilities is rather straightforward. However,
neither the command line utilities nor tools provide the user with the
flexibility and means of working with the HDF files in such an encompassing
fashion as permitted in the High-level APIs. For this reason, as well as the
fact that information and directions regarding the use of the HDF tools are
better provided by the Internet sites indicated in section 4.4, the following
sections of the tutorial will mainly concentrate on using the APIs to work with
HDF files

4.1 Low-level interface

The low-level interface is mainly reserved for expert HDF programmers and
software developers who are interested in not only reading and writing HDF
files, but also such features as error handling, memory management, and storage.
A lot of the features in this interface are unnecessary for the novice HDF user.
Another drawback is that routines/operation callable through this interface are
only available in C and not FORTRAN.

4.2 High-level interface (APIs)

In this interface, Application Programming Interfaces (APIs) are specifically
tailored for each type of data (Images, Scientific Data arrays, etc.) supported
by the HDF library. These APIs are callable routines that will allow the user to
access, read and write HDF files specifically for the type of data they are
interested in. Although it is necessary for the call of these APIs and
associated routines to occur in either a C or FORTRAN program, the programming
is usually limited to a set of call statements that access, open, operate (read,
write, etc.), and terminate. All of the rest is taken care of by the interface
itself. With its' availability in both C and FORTRAN, the minimal amount of
programming necessary, and the independent APIs and routines for each data type,
the High-level interface provides a relatively simple way for the average
programmer and novice HDF users to work with HDF files.

4.2.1 Available APIs:

Through the High-level interface, the HDF library provides APIs and associated
routines for all the data types supported by HDF. This includes 8- and 24-bit
raster images, palettes, scientific data arrays, metadata {(Annotation),

17

multivariate data stored as tables (Vdatas), and EOS Scientific Data (point,
swath, and grid APIs contained in the HDF-EOS sub-library). In addition, there
are separate APIs and routines for multi-file data sets of the variocus types.
Each API is independent of the others and is identified by a certain prefix
(different for both the FORTRAN and C program version) which is assigned to all
the function calls employed by the user in his/her program for that specific
data type.

The following is a list and short description of the variocus APIs with the C and
FORTRAN prefaces for each interface given in parenthesis:

4.2.1.1 MULTIFILE APIs

SD API (SD/sf): For scientific data sets {(multi-dimensional arrays together with
a record of dimension and number type). The SD API is used to store, manage and
retrieve multi-dimensional arrays (integer or floating point decimal), including
their dimensions and attributes in more than one file.

GR API (GR/mg): The GR API is used to store, manage and retrieve general raster
image data sets, including their dimensions and palettes. However, unlike the
DF24 and DF8 APIs, this information can be in more than one file. In addition,
the GR API can also manage unattached palettes.

VS API (VS/vsf): The VS API is used for reading and writing customized tables
which are stored in fixed length fields (Vdata).

V API (V/vf): The V API is used to create, group, and manipulate primary HDF
objects in a file (Vgroup).

VSQ API (VSQ/vsqg): The V3Q API is used for querying or obtaining information on
vdatas. This includes the number of records, names, and number types.

VE API (VF/not available): The VF API can be used for obtaining information on
the fields in an existing vdata.

AN API (AN/af): The AN API is used to store, manage, and retrieve text strings
used as metadata to describe the data file itself or any of the data elements
inside the file.

4.2.1.2 SINGLE FILE APIs

DFSD API (DFSD/ds): The DFSD API is similar to the SD API, but only operates on
one single file.

DFR8 API (DFR8/d8): The DFR8 API is used to store, manage and retrieve 8-bit
raster images, along with their dimensions and color palettes. This information
is all included in one file.

DF24 API (DF24/d24): The DF24 API is used to store, manage and retrieve 24-bit
raster images, including the dimensions of the image. This information is also
included in one file.

DFP API (DFP/dp): The DFP API is used to store and retrieve 8 bit palettes in
one file.

18

DFAN API (DFAN/da): The DFAN API is used for reading and writing text string
(metadata) assigned to HDF files or objects.

4.2.1.3 HDF-EOS APIs

PT API (PT/pt): The PT API is used for storing, retrieving, and manipulating
data in point data sets. These data have associated geolocation information, but
are not organized in a spatial or temporal fashion. The PT API is part of the
HDF-EOS sub-library.

GD API (GD/gd): The GD API is used for storing, retrieving, and manipulating
data that has been stored in a rectilinear array based on a defined map
projection. The GD API is part of the HDF-EOS sub-library.

SW API (SW/sw): The SW API is used for storing, retrieving, and manipulating
time-ordered data sets such as satellite swath data. The SW API is part of the
HDF-EOS sub-library

Rather then providing material on all of the high-level interface APIs, we have
chosen in this tutorial to use the Multi-dimensional array, multi-file interface
(SD API) as an example to teach the novice how to use HDF. For detailed
information on the other APIs, all of which are used in similar fashion to the
SD API, the reader of the tutorial is directed to the documentation identified
in Section 2 - Where can I get additional and detailed information on HDF?

4.3 Command line utilities
One method of working with HDF files is through command line utilities during a
UNIX terminal session. Command line utilities allow the user to call up HDF

application programs outside of formal C and FORTRAN programs.

4.3.1 List and description of command line utilities

The following is a list of command-line utilities available in the HDF

library:

1) hdp - displays contents and data objects within an HDF file
2) hdf24to8 - converts 24-bit raster images to HDF 8-bit images
3) hdf8t025 - converts 8-bit raster images to HDF 24-bit images
4) hdfcomp - re-compresses an 8-bit raster HDF file

5) hdfls - lists basic information about an HDF file

6) hdfpack - compacts an HDF file

7) hdfunpac - unpacks an HDF file

8) hdftopal - extracts a palette from an HDF file

9) hdftor8 - extracts 8-bit raster images and palettes from an HDF file
10) hdfed - HDF file editor

1ll)paltohdf - converts a raw palette to HDF

12)r8tohdf - converts 8-bit raster image to HDF

13)ristosds - converts a series of raster image HDF files into an HDF file
14)vshow - dumps out vsets from an HDF file

15)jpeg2hdf - converts jpeg images to HDF raster images

l16)hdf2jpeg - converts HDF raster images to jpeg images

17)hdfrseq - play an animation sequence through NCSA/BYU telnet
18)vmake - create Vset structures from ASCII text

19

The hdp command line utility is a very helpful operator, especially for the
average HDF user. HDP can list the contents of HDF files at various levels and
with different details. It can also dump the data of one or more specific
objects in the file.

Although the command line utilities permit the user to perform common operations
on HDF using a simple one-line command, the main drawback to this method is the
limited number of operations supported.

4.4 HDF browsing and visualization tools

A complete and current listing of the browsing and visualization tools that can
work with HDF files is provided by NCSA on their HDF home page
(http://hdf.ncsa.uiuc.edu/tocls.html) . There are both publicly available (free)
and commercial software packages that can be used to work with HDF files. A
summary of some of the more useful and commonly used software, including the
address of the Internet site/home page where the software may be accessed, is
provided below:

4.4.1 pPublicly Available Software

Freely available software for viewing and browsing HDF files have been developed
by both NCSA and various other institutes, science or data centers, and
businesses. We have broken these tools down into three categories:

4.4.1.1 Current NCSA Tools

The following are the most current and commonly used tools developed by NCSA for
viewing and browsing all types of HDF files:

1. The NCSA Java-based HDF Viewer (JHV) (http://hdf.ncsa.uiuc.edu/java-hdf-
html/jhv/) - Java based tool that allows the user to view the contents of
an HDF file.

2. The HDF WWW Scientific Data Browser (http://hdf.ncsa.uiuc.edu/sdb/sdb.html)
- an interface program that reads HDF files by accessing the HDF library and
can visualize or format the data (in HTML) on the web.

3. The Java HDF Server (JHS) (http://hdf.ncsa.uiuc.edu/java-hdf-html/jhs/) -
The java based program that calls the HDF library through the Java
interface and can access remote HDF files.

4.4.1.2 Older NCSA Tools (not updated to run with latest version of HDF)

Although not updated to run with the current release of HDF (HDF 4.1r3), the
following tools may still be used to work with HDF files. All of these tools are
available from the NCSA anonymous ftp server
(ftp://ftp.ncsa.uiuc.edu/Visualization/)

1) NCSA Collage - Collaborative visualization program

2) NCSA Mosaic -Browsing on UNIX

3) NCSA Polyview - Visualization and analysis of HDF files
4) NCSA Reformat - Converts HDF files

5) NCSA X DataSlice - Manipulates 3-D images

6) NCSA X Image

20

4.4.1.3 Non-NCSA Tools

The following tools have been developed independently from NCSA, but are still
available in the public domain:

1) The Data and Dimensions Interface (DDI) (http://www-
pomdi.llnl.gov/williams/ddi/ddi.html) - Can extract, read, write and
visualize large data sets in HDF format.

2) Envision (http://www.atmos.uiuc.edu/envision/envision.html) -
Interactive system that provides for the management and visualization of
large data sets in HDF format.

3) HDF Browser (http://www.fortner.com/docs/product hdf b.html)- Created
by Fortner Research to provide point-and-click access to data stored in
HDF. This includes viewing the data stored in arrays, images, etc. and
editing HDF files.

4) hdfv (http://www.blueneptune.com/~yotam/hdfv.html)- An HDF read-only
interface that is an HDF viewer with a GUI. Only supports vgroup/Vdata
data types.

5) LinkWinds (http://linkwinds.jpl.nasa.gov) - A visual data analysis and
exploration system designed to rapidly and interactively investigate large
multivariate data sets (including HDF and HDF-EOS format).

6) SHARP (http://cimss.ssec.wisc.edu/~gumley/sharp/sharp.html)- A viewer
for MODIS Airborne Simulator (MAS) HDF data.

7) ScaiBN (http://www.scri.fsu.edu/~lyons/scian)- Scientific visualization
and animation package.

8) VCS (http://www-pcmdi.llnl.gov/software/)- Facilitates the selection,
manipulation and display of scientific data and supports the HDF format
for both reading and writing.

9) EOSView (http://edhsl.gsfc.nasa.gov/waisdata/toc/tpd4450601ltoc.html) -
An HDF file verification tool that allows the display of most HDF and HDF-
EOS data types.

10) The Data and Information Access Link (DIAL) (http://dial.gsfc.nasa.gov/)-
A server which provides tools for the searching, browsing, and visualizing
of HDF and HDF-EOS files through the WWW.

11) HDFLook (http://loasys.univ-lillel.fr/Hdflook/hdflook gb.html) - A
viewer used to access and view HDF and HDF-EOS files, particularly raster
images and scientific data sets.

12) IRI/LDEO (http://ingrid.ldgo.columbia.edu/) - A climate data library
that helps in the writing of HDF files and the management of data sets.

13) Webwinds (http://webwinds.jpl.nasa.gov/) - A platform independent
system written in java that acts as an interactive visualization tool for
data in HDF and HDF-EOCS format.

21

14) view_hdf (http://ecsweb.larc.nasa.gov/HPDOCS/view hdf.html) - A
visualization tool developed by NASA LARC that provides for the viewing,
plotting, and manipulation of HDF datasets

4.4.2 Commercial Software

Below is a partial list of some of the more powerful and more commonly used
software packages for working with HDF files:

1)AVS5/AVSExpress (http://www.avs.com/products/index.htm) - Can read and
write files in HDF format. Also includes a suite of data visualization and
analysis techniques/tools (3-D visualization, plots, etc.).

2)Data Explorer (http://www.research.ibm.com/dx)- General-purpose software
package for data visualization and analysis. The data may be imported from
HDF format.

3) IDL (http://www.rsinc.com/idl/index.cfm) - software package for the
analysis and visualization of data. Includes advanced image processing,
interactive 2-d and 3-D graphics, and flexible date input/output.

4) Noesys (http://www.fortner.com/noesys)- A desktop software program
specifically designed to easily access, view, analyze and archive data in
the HDF format.

5) Plot (http://www.fortner.com/docs/product plot.html)- A package that
can read, analyze and plot HDF data sets of column data using Windows,
Macintosh and UNIX.

6) HDF Explorer (http://www.mind.pt/hdf.explorer) - A visualization
program that reads and views data sets in HDF format.

4.4.3 Contributed Software

In addition to the above-mentioned software, also available from the NCSA
anonymous ftp server is a collection of software routines and utilities
developed by HDF users who wish to share their knowledge and work with the HDF
community. This software can be found in the directory pub/hdf/contrib/ of the
anonymous ftp server (ftp://ftp.ncsa.uiuc.edu/EDF/HDF/contrib/). Most of these
"contributed"” routines were developed with specific platforms and operating
systems in mind. Below are a few examples:

) readDF - reads HDF files into IRIS Explorer

) fits2hdf - converts FITS files (another format) into HDF
) iristohdf - converts SGI image format to HDF format

) hdfxdis - directly displays HDF image on an X-server

RNV

These routines together with the name and address of the developer are free and
publicly available to all interested users of HDF

22

5. SD API

The SD (Scientific Data) API is a collection of callable (from C or FORTRAN
programs) routines which will allow the user to, among other operations, create,
write, and read HDF files containing multi-dimensional arrays of scientific
data. In subsequent sections, we will show how the SD API can be used for
reading and writing HDF data sets. For a complete listing of all the operations
permitted in the SD API, please see the HDF 4.1r3 User's Guide
(ftp://ftp.ncsa.uiuc.edu/HDF/HDF/Documentation/HDF4.1r3) As will be demonstrated
shortly, FORTRAN and C routines in the SD API begin, respectively, with the
prefix "sf" or "SD". Data within a scientific data set may be of the floating
real or integer type. In HDF, and in the SD API, a scientific data set (or SDS)
must consist of a multi-dimensional array (called a SDS array), together with
information on data type and dimension record. The SD API allows the user to
work simultaneously with more than one multi-dimensional scientific data set
(SDS) while the DFSD API is restricted to one multi-dimensional array.

5.1 SDS Array

The SDS array is the actual data itself, an n-dimensional array which contains
the floating point or integer values. Each 3SDS array has an SDS name (series of
alphanumeric characters) that can either be assigned by the calling statement
with the FORTRAN or C program or automatically assigned by the HDF library when
the new data set (if writing) is created.

5.2 Data Type
The SD API supports the following data types:

32-bit floating point

16-bit floating point

8-bit signed integers

16-bit signed integers

32-bit signed integers

8-bit unsigned integers

16-bit unsigned integers

32-bit unsigned integers

Variable bit integers and floating point decimal values

O o~y WM

As described later, the data type is defined in the accessing/creating function
call statements within the C and FORTRAN programs.

5.3 Dimensions

The dimensions of a SDS array identify the shape and size of the array in
question. This includes the rank of the dimensions, which in HDF speak refers to
the number of dimensions. One innovative feature of HDF is that one, and only
one, dimension of a SDS array may be of unlimited size and referred to as an
unlimited dimension.

5.4 Optional information

23

When writing or creating an HDF file, the user may also wish to include
information regarding the data set or array. This must be done in the calling
functions of the C or FORTRAN programs.

Attributes, either predefined by NCSA or user-defined, are text strings which
provide metadata about the file, data set, or dimension of interest. This
includes information on what is in the file or individual SDS arrays, and how
the maker of the file/data intends for the data to be used or viewed. Like most
of the other routines mentioned above, attributes are defined in the function
calls of the program. Attributes are further covered in section 6.

24

6. Attributes and Metadata

The HDF library allows for several ways for the user to provide metadata (data
about data) information for the HDF file or data set to be written or read. This
information is not a requirement for HDF files. The most commonly used method or
routine within the HDF library for providing metadata are "Attributes" or text-
strings which describe the HDF file, data set (SDS array) or dimensions. There
are two types of attributes used in HDF that can be defined in the user's
calling program:

- User-defined attributes
- Predefined attributes

Both the predefined and user-defined attributes may be accessed using the
general attribute routines for user-defined attributes provided by the HDF
library. On the other hand, the predefined attributes may only be accessed using
the routines specifically tailored for the predefined attributes (see above). As
a result, in later sections, we will focus on using the general attribute
routines developed for user-defined attributes

6.1 User-defined attributes

User-defined attributes are optional information that can be given and attached
to HDF files, scientific data sets, and dimensions. They are referred to,
respectively, as file attributes, array attributes, and dimension attributes.
These attributes are at the discretion of, and to be defined by, the user.

The SD interface uses the same functions to access all of the three types of
attributes, with the difference being the use and definition of the different
identifiers (i.e., file ids for file attributes, SDS ids for array attributes,
and dimension ids for dimension attributes). After the proper identifier is
obtained, the user can then create and define his attribute (labels, formats,
coordinate system, etc.)

More on user—-defined attributes and how to define them is provided in Section 7:
Writing an HDF File.

6.2 Predefined attributes

Predefined attributes are attributes that use previously defined or reserved
labels and data types. While the user-defined attributes must be defined by the
user, the predefined attributes need not be defined and are already understood
by the HDF library. However, predefined attributes can only be assigned to
scientific data sets (SDS) and dimensions (not files, like is possible with
user-defined attributes).

There are seven main predefined attributes:

For labels: long name

For units: units

For formats: format

For coordinate systems: cordsys
For Value ranges: valid range
For Fill values: FillvValue

Sy W W N

7) For Calibration: scale_factor
scale_factor_err
add offset
add offset _err
calibrated nt

The predefined attributes can be accessed by the SD interface in the same
general fashion as the user-defined attributes or by using routines developed
specifically for the predefined attributes. The ""general"" attribute routines
are recommended in most cases.

25

26

7. Writing an HDF File

The following sections detail how a user may utilize the HDF library and various
APIs within a computer program to write a data file in HDF. As a teaching tool,
this tutorial will concentrate on using the FORTRAN programming language and the
SD API. However, examples of the appropriate C code will also be given for
certain steps.

- Does the current version of HDF support your computer platform?
- Downloading and installing of the HDF library

- Are all libraries and programs properly linked and compiled

- Writing a short program to write data in HDF

7.1 Does the current version of HDF support your computer platform?

As outlined in Section 3, the HDF library can not be run on just any available
computer platform or operating system. Before downloading the HDF library
software, the user should make sure that the current release of HDF supports
his/her computer and operating system. Otherwise, the user will be unable to
work with the HDF library and files. There is also a possibility that previous
releases of HDF may support the Users computer platform while the latest version
does not. In this event, the user may wish to obtain the earlier software.

7.2 Downloading and Installing of the HDF library

The HDF library and software is public domain software and available free to all
users. The library and code can be downloaded from the NCSA anonymous ftp server
(ftp://ftp.ncsa.uiuc.edu/HDF/HDF/HDF4.1r3) . Directions on how to install the HDF
library can also be found at this location.

7.3 Are all libraries and programs properly linked and compiled?

In order to run the HDF software, the library and the needed application
routines and programs must first be properly compiled and linked. As of the
current release of HDF (4.1r3), four separate libraries must be compiled and
linked. These are the libmfhdf.a, libdf.a, libjpeg.a, and libz.a libraries.
Provided below are examples of the command(s) that can be used for this action.
It must be noted that the order in which the libraries are linked is important
and should not vary from the order shown below:

For C programs:
cc -0 <your programé> <your program>.c \
-I<pathf for hdf include directoryagt; \
-L<path for hdf libraries> -lmfhdf -1df -ljpeg -1z
For FORTRAN programs:
f77 -o <your program> <your program>.f \
-I<path for hdf include directory> \
-L<path for hdf librariess> -lmfhdf -1df -ljpeg -1z

For the various commands needed to link and compile the HDF library on each
individual platform, please see Section 3 - Compiling the HDF library.

27

7.4 Writing a short program to write data in HDF

The following steps (some which are rather simple and common sense) should be
addressed by the user before, during or after the creation of the calling
program to be used. Each step will be discussed in further detail in the
sections that follow.

) Select a programming language
2) Make sure all include files are in place

) Make all variable and parameter declarations

4) Open file containing existing non-HDF data set and store in array
5) Initialize access to the SD interface and open new HDF file

6) Define characteristics of new HDF data set (s)

7) Write existing data set/array to a new data array in a new HDF file
8) Optional operation: Provide metadata for HDF files or data sets

9) Terminate / close access to all files, data sets, and APIs
10) Execute program

7.4.1 Select a programming language

As mentioned previously, the HDF library and programs can only be run by using
either the C or FORTRAN programming language. This choice is up to the user
depending on availability and the language he or she feels most familiar and
comfortable with. All SD API routines which allow the user to work with
scientific data sets (SDS) either have the "sf" prefix (FORTRAN) or the "SD"
prefix (C). Examples of the routines used to open, create, read, and write SDS
are given in the following sections.

7.4.2 Make sure all include files are in place

In section 3 - The HDF Library: Software and Hardware, it was noted that a
series of standard HDF definitions and declarations of file access codes (i.e.
read, write, etc.) and data types (i.e. integer, character) must be included
within the user’s programs. In the C programs, this is accomplished simply by
adding the line #include "hdf.h" at the beginning of the program. This line
effectively includes all the needed constants and definitions from the HDF
software. When writing FORTRAN programs, this may also be done by simply adding
an include statement that brings in only the needed definitions and declarations
(constants.f) from the hdf.h header file. This is done by the following code:
"include constants.f". However, all FORTRAN compilers (particularly the older
ones) do not support the use of include statements. In this event, the user must
type in/declare all the constants and definitions found in the constants.f file.
It is advised that all declarations, whether through include statements or not,
should be done at the beginning of the program.

Example:
FORTRAN:
C DFACC_RDONLY is defined in hdf.h

C if not available for FORTRAN then add
Parameter (DFACC_RDONLY=1

#include "hdf.h"

28

main() {

7.4.3 Make all variable and parameter declarations

As with any program, the scientist/user should declare and initialize all
variables and parameters at the beginning of the program. This includes all
variables and arguments that will be used by the HDF commands to follow. The
variable and parameter declarations needed for each call will be provided in the
example boxes of the individual steps. These statements always belong at the top
of the program.

7.4.4 Open file containing existing non-HDF data set and store in array

Before writing any data into HDF, the actual data first has to be accessed
within the program. As is normally done in non-HDF applications, the file
containing the data that the user wishes to convert into HDF must first be
opened. After opening the file, the user reads and stores the data into a multi-
dimensional array that can be accessed by the HDF commands.

For the purpose of this tutorial, the non-HDF data set will be read from an
existing file called wind.dat into a multi-dimensional real array called rwind
(XL, YL) where XL= 30 and YL = 30.

Example:

C:
main () {
FILE *infile;
const int

XL = 30
YL = 30;
int i, 3

float rwind[XL][YL]:

infile = fopen("wind.dat", "r");
for(i=0; 1i<XL; i++)

for(j=0; j<XL; j++)
fscanf (infile, "$%f", rwind[i]I[3j]);

}

FORTRAN:

real rwind (30, 30)
XL = 30
YL = 30

Open (unit=15, file='wind.dat',6 form='formatted')
Do I=1,XL

Do j=1,YL

Read (15, 25) rwind (I, J)

Enddo
Enddo

7.4.5 Initialize access to the SD interface and open new HDF file
The first real HDF programming step actually accomplishes 2 things:

1) Creates and opens a new HDF file
2) Initializes and opens the SD interface.

This is done by the following command:

sd id = sfstart(filename, access_mode) (FORTRAN)
or
sd id = SDstart(filename, access_mode); (C)
where;
sd_id = HDF file id returned by the sfstart/SDstart command

filename = the name of the new HDF file (character string)
access mode = Type of access required for this file

All available options for the access-mode argument are defined in the hdf.h
header file mentioned previously and need only to be identified for all C and

29

most FORTRAN operations. All options begin with the prefix “DFACC " and include:

DFACC_CREATE (File Creation Access)
DFACC_RDONLY (Read Access)
DFACC_RDWR (Read and Write Access)

As mentioned previously, these definitions are stated in the hdf.h header file.

In the event that the user's FORTRAN compiler can not handle include statements

such as those found in the hdf.h header file, the DFACC_ variable must be

defined, along with its assigned value, at the beginning of the program. This is

done by a line of code such as:

parameter (DFACC RDONLY = 1) (For FORTRAN only)

For the purpose of this tutorial, the new HDF file will be called wind.hdf.

Example:

FORTRAN:

integer*4 sd id

integer sfstart

parameter (DFACC_CREATE = 4)

sd_id = sfstart(wind.hdf, DFACC_CREATE)

#include "hdf.h"
/* Includes all the access mode definintions */
int32 sd_id;

30

sd id = SDstart(wind.hdf, DFACC_CREATE);

7.4.6 Define characteristics of new HDF data set(s)

After initializing the SD interface and opening and assigning a file id (sd_id)
to the HDF file to be used, the next step is to define a new HDF Scientific Data
Set (SDS) to which the existing non-HDF data will be written. This is done by
the following command:

sds_id = sfcreate (sd_id, name, number_type, rank, dim_sizes) (FORTRAN)
or
sds_id = SDcreate (sd_id, name, number_ type, rank, dim sizes); (C)

It should be noted that sfselect/SDselect may also be used to write to a
previously defined HDF data set.

Where

sds_id = HDF SDS array id returned by the sfcreate/SDcreate command

sd_id = the new HDF file id created in the previous step (sfstart/SDstart)
name = name of new SDS (in ASCII character string)

number type = data type of data set

This argument always takes the form of DFNT X, where X is the data type to be
used. A list of all the data types supported by the API can be found in the HDF
User's Guide. For most of the data types, 8,16,32 and 64-bit types are
supported. A few of the available options are provided below:

DFNT FLOAT for Floating Point Reals
DENT_DOUBLE for Double Precision Reals
DFNT_CHAR for Character

DFNT_INT16 for 1é6-bit Integer Type

DFNT UINT16 for 16-bit Unsigned Integer Type
DFNT_ INT32 for 32-bit Integer Type
DFNT_UINT32 for 32-bit Unsigned Integer Type

Similar to the DFACC_ argument, all data types are defined in hdf.h. Once again,
for FORTRAN compilers unable to access these include files, the DFNT_ argument,
and its' assigned value, must be defined at the beginning of the program using
code like this:

parameter (DFNT INT16 = 22) (taken from constants.f within the hdf.h file)

rank = number of dimensions in array to be written (integer)

This value is best specified at the beginning of the program along with the
other various declarations. This can be done with a simple line of code:

rank 2, 3;....

dim sizes = An array defining the size of each dimension of the data array
(integer)

31

As with the "rank" argument, this variable is best specified with the other
variable declarations at the top of the program. In FORTRAN, an example for a 2-
D, 30 X 30 array would be:

dimsizes (1) = 30 (FORTRAN)
dimsizes (2) = 30

or
dimsizes[0] = 30; (C)

fl

dimsizes([1] 30;

EXAMPLE: For an existing data set to be written as a 2-D array of 30 (x
direction) by 30(y direction), and as an 8-bit integer type, the following

commands need to be used:

rank = 2 (FORTRAN)
dimsizes (1) = 30
dimsizes(2) = 30

sds_id = sfcreate(sd_id, newarray 1, DFNT_INT8, rank, dimsizes)

or

rank = 2; (C)

dimsizes[0] = 30;

dimsizes[1] 30;

sds_id = SDcreate(sd_id, "newarray 1", DFNT_INT8, rank, dimsizes):;

Example:

FORTRAN:
integer*4 DFNT_INT16
integer sds_id, rank
integer dims(2), sfcreate

rank = 2
XL = 30
YL = 30
dims (1) = XL
dims(2) = YL

sds_id = sfcreate(sd_id, winds, DFNT_INT16, rank, dims)

int32 sds_id;
int32 dims[2], rank;
rank = 2;

XL = 30;
YL = 30;
dims{0] = YL;

dims[1] = XL;
sds_id = SDcreate(sd_id, winds, DFNT_INT16, rank, dims);

32

7.4.7 Write existing data set/array to a new data array in a new HDF file

After initializing the API and defining the new HDF file and new HDF SDS to be
written to, the next step is to actually write the existing non-HDF data into
the HDF file by using the SDwritedata (sfwdata) command. This command is used to
write either all or part of the existing n-dimensional data set (termed a
"slab") into the sds_id array with the same number of dimensions. 1In addition,
the size of each dimension of the data "slab"™ must be the same or smaller then
the corresponding dimension of the sds_id. The SDwritedata/sfwdata command is
used in the following fashion:

ret=sfwdata (sds_id, start, stride, edge, data) (FORTRAN)
or
ret=SDwritedata (sds_id, start, stride, edge, data); (C)

It should be noted that there are two versions of the write routine in FORTRAN,
"sfwdata" is used for numeric data while "sfwcdata" is used for writing
character data

Where

sds_id = the SDS id (identifier) determined and returned by using
SDcreate(sfcreate)

start = An array which identifies where in the SDS that the writing will
begin

The start array identifies the location or position in the SDS where the writing
of the data "slab" will begin. This array must have the same number of
dimensions (rank) as the SDS and can not be larger (in each dimension) then the
SDS array. The declaration of the start variables can be done at the top of the
program or just preceding the call of the sfwdata (SDwritedata) command. As an
example, to write the existing data set to the beginning of a new 2-dimensional
SDS the following must be specified:

start(l) = 0O (FORTRAN)
start(2) =0

Or
start[0] = 0; (C)
start([1l] = 0;

If the user wishes to begin writing the data at a location other then the
beginning of the new data set, say at a first dimension (X) of 15, the
declarations would be:

start(l) = 15 (FORTRAN)
start (2) 0

1

33

start[0] = 15; (C)
start[1]

I
o

stride = An array specifying the interval between written values in each
dimension.

The stride argument specifies, for each dimension, the interval between
consecutive written values of the data set. In other words, how many array
locations are skipped with each writing of the data? Like the start array, the
stride argument is predefined before calling the sfwdata (SDwritedata) command,
either directly before the call or at the top of the program.

If the user does not wish to skip any array locations in a new 2Z-dimensional
SDS, the following is to be declared:

stride(l) = 1 (FORTRAN)
stride(2) =1

or
stride(0) = 1; { C)
stride(l) = 1;

However, if the user wishes to skip every other X (dimension 1) location, the
following would be used:

stride(l) = 2 (FORTRAN)
stride(2) =1

or
stride(0) = 2; (C)
stride(l) = 1;

edge = An array defining the number of data values to be written in each
dimension.

The edge array defines the number of data values/elements that will be written
along each dimension of the multi-dimensional SDS array. In plain terms, this
argument defines the size of the data slab (all or part of the data) to be
written to the new SDS array and each dimension.

edge must be specified for each dimension of the data set and SDS array, and can
not be larger then the entire length of the newly defined (from sfcreate) array
it is being written to.

The edge is affected by the stride. If stride = 2, then the edge will need to
be divided by two, because it will be writing to every other location along a
dimension.

Similar to stride and start, the edge argument needs to be defined prior to the
calling of the sfwdata (SDwritedata) command, whether it be at the top of the
program or directly before the routine call.

As an example, most often, the user will wish to write the entire non-HDF data
set into a new array that starts from the beginning and does not contain any
missing data or blanks. For a 2-dimensional array of 30X30, read and stored
into the data array "rwind", this can be done, in FORTRAN, by:

start(l) = 0
start(2) = 0
stride(l) = 1
stride(2) = 1
edge(l) = 30
edge(2) = 30

retn = sfwdata(sds_id, start, stride, edges, rwind)

Or in C by:
Start [0} = 0;
Start[l] = 0;
Stride([0] = 1;
Stride[l] = 1;

Edge (0] = 30;
Edge[1l] = 30;
retn = SDwritedata(sds_id, start, stride, edges, rwind);

data = The array or buffer of data to be written
The file containing this data should be opened at the beginning of the program

and the data read in and stored into the necessary arrays before beginning the
HDF operations.

Example:
FORTRAN:

integer start(2), edges(2), stride(2)
integer retn, XL, YL
integer sfwdata

o] Define the location, pattern and size of data set that
c will be written to.
XL = 30
YL = 30
start (1)
start(2) = 0
edge (1) = XL
edge (2) = YL
stride(1l) = 1
stride(2) = 1
c write the data

retn = sfwdata(sds_id, start, stride, edges, rwind)

34

35

int32 retn;

int32 start(2], edges{2], stridel2];

XL = 30;

YL = 30;

/*Define the location, pattern and size of the dataset*/
For (i=0; i<rank; i++) {

start[i] = 0;
edge([i] = dims([i];
edge(l) = 30;

/* Write the stored data to "newarray". The 5th argument must be
explicitly cast to a generic pointer to conform to the API
definition for SDwritedata */

retn = SDwritedata(sds_id, start, NULL, edges, (VCIDP)newarray);

7.4.8 Optional operation: Provide metadata for HDF files or data sets

Using the general attribute routines for user-defined attributes described in
section 6, attributes can be written and attached to the file itself, the data
set, and the dimension in question. This is not required, but up to the choice
of the user.

After opening the file and obtaining the file id (sd _id) using the
sfstart/SDstart command, the following can be done
7.4.8.1 FILE ATTRIBUTES:
To assign attributes to a file, the following command is used:
SDsetattr (sd _id,attr name, data_type, count, value); (C)
sfsnatt(sd _id, attr name, data_type, count, value) (FORTRAN)

There are two FORTRAN versions of the routine, sfsnatt writes numeric attribute
data while sfcatt writes character attribute data.

Where
sd id= file identifier
attr name = ASCII string containing the name of the attribute (i.e., "file
contents")
data_type = data type of attribute values (i.e., DFNT_INT32)
count = total number values/characters in the attribute
value = text string or label

7.4.8.2 ARRAY ATTRIBUTES

After each data set identifier (sds_id) is obtained through the
SDselect/sfselect command, the following is used:

SDhsetattr (sds_id, attr_name, data_type, count, value); (C)
sfsnatt(sds _id, attr name, data_type, count, value) (FORTRAN)

where

36

sds_id= data set identifier
rest as above

7.4.8.3 DIMENSION ATTRIBUTES

After getting the identifier for a dimension using the sfdimid/SDgetdimid
command, the following is used:

SDsetattr (dim id, attr name, data_ type, count, value); (C)

sfsnatt (dim id, attr_name, data_type, count, value) {FORTRAN)
where

dim_id= Dimension identifier

rest as above
7.4.8.4 CLOSING ATTRIBUTES
After setting/writing the attributes, the user must terminate access to the data
array (using the SDendaccess/sfendacc commands) and the file and SD interface
(using the SDend/sfend commands).

Example:

1) FILE ATTRIBUTES:

FORTRAN:
sd_id = sfstart("wind.hdf", DFACC_RDWR)
retn = sfsattr(sd _id, "Contents of file", DFNT CHAR8, 16,
"horizontal winds")

C:

sd _id=SDstart ("wind.hdf", DFACC_RDWR);
retn= SDsetattr (sd id, "Contents of file", DFNT_ CHAR8, 16,
"horizontal winds ");

2) ARRAY ATTRIBUTES

FORTRAN:

sds_id=sfselect (sd_id, 0)
retn = sfsattr(sds_id, "format", DFNT_INT32, 4, "Fg.2")

sds_id=SDselect(sd_id, 0);
retn= SDsetattr (sds_id, "format", DFNT_INT32, 4,
"F8.2") ;</PRE></DIR>

3) DIMENSION ATTRIBUTES

FORTRAN:

37

dim id=sfdimid {sds_id, 0)
retn = sfsattr(dim id, "dim metric", DENT_CHARS, 10,
"meters/sec")</PRE>

dim_id=SDgetdimid (sds_id,0):
retn= SDsetattr (dim id, "dim metric", DFNT_CHAR8, 10,
"meters/sec") ; </PRE></DIR>

7.4.9 Terminate / close access to all files, data sets, and APIs

After writing the data to the new SDS array within the new HDF file, it is
necessary to terminate or close access to the new data set in order to prevent
any possible loss of data. This is done by the following:

retn

retn

In addition,

sfendacc (sds_id) {FORTRAN)
or
SDendaccess {sds_id); {Cc)

the API called within the program must alsc be closed to prevent

any data loss:

retn

retn

Example:

FORTRAN:

i

sfend(sd id) (FORTRAN)
or

SDend (sd_id); (C)

integer sfendacc, sfend
retn
retn

retn
retn

= sfendacc(sds_id)
= sfend(sd_id)

SDendaccess (sds_id);
SDend (sd_id);

7.4.10 Execute program

Execute like a normal FORTRAN or C program.

38

8. Obtaining Information on Existing HDF Files

As mentioned previously, a single HDF file may contain more than one scientific
data set (or images, tables, etc.). Within the SD interface (and other
interfaces for the various data types), there are routines that can be called
within short programs, C or FORTRAN, which help the user do the following:

- Determine the contents of an HDF file
- Obtain information on individual data sets
- Locate a Scientific Data Set (SDS) by name

8.1 Determine the contents of an HDF file

Before reading an HDF file, it might be necessary for the user to determine the
number of data sets within the file, and the attributes of the file itself.
After initializing and accessing the Application interface (in this case, the SD
and GR interfaces for, respectively, scientific data sets and images (with
associated palettes), this can be done using the following statements:

SDfileinfo(sd_id, n_datasets, n_file_attr); (C)
GRfileinfo(gr id,n images,nfile_attr)

and
sffinfo(sd id, n_datasets, n_file attr) (FORTRAN)
mgfinfo(gr id,n images,n_file attr)

where

sd _id= file id number

gr _id= GR interface identifier

n_datasets= Number of data sets within the file
n file attr= number of file attribute

n_images= number of images within the file

8.2 Obtain information on individual data sets

Before reading a particular data set or image from an HDF file, the user may
need to know the rank, dimension sizes, data type, and number of attributes of

the data array.

After the user has initiated and accessed the interface (for example, the GR
interface for images and the SD interface for data arrays) and selected the data
set by using the sfselect/SDselect (data set) or mgselct/GRselect (image) in a
short FORTRAN (C) program, this information can be retrieved using the following
calls:

SDhgetinfo (sds_id, name, rank, dim_sizes, num_type, attributes); (C)

GRgetinfo(ri_id,name,n_comps,data_type,interlace_mode,dim_sizes,n_attrs)
and

sfginfo (sds_id, name, rank, dim_sizes, num_type, attributes) (FORTRAN)

mgginf (ri_id, name,n_comps,data_type,interlace_mode,dim_sizes,n_attrs)

Where

39

sds_id = data set id number

ri id = raster image id number

name = name of corresponding data set

rank = rank of corresponding data set

dim sizes = dimensions of corresponding data set
num_type = data type of corresponding data set
data _type = data type of corresponding image
attributes = number of attributes of corresponding data set
n_comps = number of components

interlace mode = interlacing mode of data
n_attrs = number of sttributes

8.3 Locate a Scientific Data Set (SDS) by name

In most cases, when a scientific data set is created, it is assigned a unique
identification number (or sds id) so that it can be located and accessed in the

future by using the sfselect (SDselect) calls in a FORTRAN (C) program. If no
sds_id has been assigned, the id can be determined from the name of the data set
using the following statements:

sds_index = Sbhnametoindex (sd_id, sds_name}); ()

sds_id = SDselect(sd_id, sds_index);

sds_index = sfn2index(sd_id, sds_name) (FORTRAN)

sds_id = sfselect(sd_id, sds_index)
where

sds_index = data set index number

sds _name = data set name
sd id = HDF file index number

40

9. Reading Data from an HDF File

The following sections detail how a user may utilize the HDF library the SD API
within a computer program to write a data file in HDF. In this section, the
tutorial will concentrate on using the FORTRAN programming language and the SD
API. However, examples of the appropriate C code will also be given for certain
steps. For the purpose of this tutorial, we are choosing the example of reading
an entire data array that is the first and only data set in the HDF file.
Similar to writing an HDF file, the user should follow these simple steps:

- Does the current version of HDF support your computer platform and
operating system?

- Downloading and Installing the HDF library

- Are all libraries and programs properly linked and compiled?

- Writing a short program to read an HDF data set

9.1 Does the current version of HDF support your computer platform and operating
system?

As outlined in Section 3, the HDF library can not be run on just any available
computer platform or operating system. Before downloading the HDF library
software, the user should make sure that the current release of HDF supports
his/her computer and operating system. Otherwise, the user will be unable to
work with the HDF library and files. There is also a possibility that previous
releases of HDF may support the Users computer platform while the latest version
does not. In this event, the user may wish to obtain the earlier software.

9.2 Downloading and Installing the HDF library

The HDF library and software is public domain software and available free to all
users. The library and code can be downloaded from the NCSA anonymous ftp server
(ftp://ftp.ncsa.uiuc.edu/HDF/HDE/HDF Current). Directions on how to install the
HDF library can also be found at this location.

9.3 Are all libraries and programs properly linked and compiled?

In order to eventually run the HDF software, the library and the needed
application routines and programs must first be properly compiled and linked. As
of the current release of HDF (4.1r3), four separate libraries must be compiled
and linked. These are the libmfhdf.a, libdf.a, libjpeg.a, and libz.a libraries.
Provided below are examples of the command(s) that can be used for this action.
It must be noted that the order in which the libraries are linked is important
and should not vary from the order shown below:

For C programs:

cc -o <your programé> <your program>.c \
-Islt;pathf for hdf include directoryé>\
-L<path for hdf librariesegt; -lmfhdf -1df -ljpeg -1z

For FORTRAN programs:

£f77 -o <your program> <your programé>.f \
-Is<path for hdf include directory>\

41

-L<path for hdf libraries> -1lmfhdf -1ldf -ljpeg -lz

For the various commands needed to link and compile the HDF library on each
individual platform, please see Section 3- Compiling the HDF Library.

9.4 Writing a short program to read an HDF data set
9.4.1 Select a programming language

As mentioned previously, the HDF library and programs can only be run by using
either the C or FORTRAN programming language. This choice is up to the user
depending on availability and the language he or she feels most familiar and
comfortable with.

9.4.2 Make sure all include files are in place

Farlier, it was noted that a series of standard HDF definitions and declarations
of file access codes (i.e. read, write, etc.) and data types (i.e. integer,
character) must be included within the programs that the user writes to utilize
the various application routines. In the C programs, this is accomplished
simply by adding the 1line $include "hdf.h" at the beginning of the program.
This line effectively includes all the needed constants and definitions from the
HDF software. When writing FORTRAN programs, this may also be done by simply
adding an include statement that brings in only the needed definitions and
declarations {(constants.f) from the hdf.h header file. This is done by the
following code: "include constants.f”. However, all FORTRAN compilers
(particularly the older ones) do not support the use of include statements. In
this event, the user must type in/declare all the constants and definitions
found in the constants.f file. It is advised that all declarations, whether
through Include statements or not, should be done at the beginning of the
program.

9.4.3 Make all variables and parameter declarations

As with any program, the scientist/user should declare and initialize all
variables and parameters at the beginning of the program. This includes all
variables and arguments that will be used by the HDF commands to follow. The
variable and parameter declarations needed for each call will be provided in the
example boxes of the individual steps. These statements always belong at the top
of the program.

9.4.4 Initialize access to the SD interface and open HDF file
The first real HDF programming step actually accomplishes two things:
1) Opens the existing HBDF file
2) Initializes and opens the SD interface.

This is done by the following command:

sd id

sfstart (filename, access mode) (FORTRAN)

or

sd_id = SDstart(filename, access_mode): (C)

42

where

sd_id = HDF file id returned by the sfstart/SDstart command
filename = the name of the existing HDF file (character string)
access mode = Type of access required for this file

All available options for the access-mode argument are defined in the hdf.h
header file mentioned previously and need only to be identified for all C and
most FORTRAN operations. All options begin with the prefix "DFACC_ " and
include:

DFACC_CREATE (File Creation Access)

DFACC_RDONLY (Read Access)

DFACC_RDWR (Read and Write Access)
These definitions are stated in the hdf.h header file.
In the event that the user's FORTRAN compiler can not handle include statements
with the header file (hdf.h), the DFACC_ variable must be defined, along with

its assigned value, at the beginning of the program. This is done by a line of
code such as:

parameter (DFACC_RDONLY = 1) (For FORTRAN only)

Example:
FORTRAN:

integer*4 sd _id

integer sfstart

parameter (DFACC RDONLY = 1)
sd_id=sfstart ("wind.hdf", DFACC RDONLY)

#includehdf.h"

int32 sd_id;

sd id=Sdstart ("wind.hdf", DFACC RDONLY
9.4.5 Select data set to be read from the HDF file
After initializing the SD interface and opening and assigning a file id (sd_id)
to the HDF file to be used, the next step is to select the HDF Scientific Data
Set (SDS) which will be read. This is done by the following command:

sds id = sfselect (sd_id, sds_index) (FORTRAN)

or

1l

sds_id = SDselect (sd_id, sds_index) (C)

where

43

sds_id = HDF SDS array id returned by the sfselect/SDselect command
sd_id = the HDF file id created in the previous step (sfstart/SDstart)
sds_index = index number of data set within file

(i.e. 0 = first data set, 1 = second data set, etc.)

Example:
FORTRAN:

integer sds_id, sds_index, sd_id

integer sfselect

sds_index = 0 represents the first data set
sds id = sfselect(sd_id,0)

int32 sd_id, dims(2];
dims[0] = YL;

dims[1l] = XL:;

sds_id = Sdselect(sd_id,0);

9.4.6 Read an existing data set/array

After initializing the API and selecting the HDF file and HDF SDS to be read to,
the next step is to actually read the existing HDF data by using the SDreaddata
(sfrdata) command. This command is used to read either all or part of the
existing n-dimensional data set (termed a "slab") into the sds_id array with the
same number of dimensions. In addition, the size of each dimension of the data
"slab" must be the same or smaller then the corresponding dimension cf the
sds_id. The SDreaddata/sfrdata command is used in the following fashion:

ret=sfrdata (sds_id, start, stride, edge, data) (FORTRAN)
or
ret=SDreaddata (sds_id, start, stride, edge, data); (C))

It should be noted that there are two versions of the read routine in FORTRAN.
The sfrdata routine reads numeric scientific data while sfrcdata reads character
scientific data

sds_id = the SDS id (identifier) determined and returned by using SDcreate
or SDselect (sfcreate/sfselect)

start = An array which identifies where in the SDS that the writing will
begin

The start array identifies the location or position in the SDS where the reading
of the data "slab"™ will begin. This array must have the same number of
dimensions (rank) as the SDS and can not be larger (in each dimension) then the
SDS array. The declaration of the start variables can be done at the top of the

44

program or just preceding the call of the sfrdata (SDreaddata) command. As an
example, to read the existing data set to the beginning of a new 2-dimensional
SDS the following must be specified:

start(l) = 0 (FORTRAN)
start(2) = 0

or
start[0] = O; (C)
start{l] = 0;

If the user wishes to begin reading the data at a location other then the
beginning cf the data set, say at a first dimension (X) of 15, the declarations
would be:

start(l) = 15 {FORTRAN)
start(2) = 0

or
start[0] = 15; (C))
start({1l] = 0;

stride = An array specifying the interval between written values in each
dimension.

The stride argument specifies, for each dimension, the interval between
consecutive written values of the data set. 1In other words, how many array
locations are skipped with each reading of the data. Like the start array, the
stride argument is predefined before calling the sfrdata (SDreaddata) command,
either directly before the call or at the top of the program.

If the user does not wish to skip any array locations in a new 2-dimensional
SDS, the following is to be declared:

stride(l) = 1 (FORTRAN)
stride(2) = 1

or
stride[0] = 1; (C)
stride(l] = 1;

However, if the user wishes to skip every other X (dimension 1) location, the
following would be used:

stride (1) = 2 (FORTRAN)
stride(2) = 1

or
stride{0] = 2; (C)
stride(l] = 1;

edge = An array defining the number of data values to be read in each dimension.

45

The edge array defines the number of data values/elements that will be read
along each dimension of the multi-dimensional SDS array. In plain terms, this
argument defines the size of the data slab (all or part of the data) to be
written to the new SDS array and each dimension.

The parameter edge must be specified for each dimension of the data set and SDS
array, and can not be larger then the entire length of the array being read.

Similar to stride and start, the edge argument needs to be defined prior to the
calling of the sfrdata (SDreaddata) command, whether it be at the top of the
program or directly before the routine call. The file containing this data
should be opened at the beginning of the program and the data read in and stored
into the necessary arrays before beginning the HDF operations.

As an example: Most often, the user will wish to read an HDF file which contains
one data set (winddata), which starts from the beginning and does not contain
any missing data or blanks.

For a 2-dimensional array of 30X30, read and stored into the data array
"testdata", this can be done by:

start(l) = 0 (FORTRAN)
start(2) = 0
stride(l) =1
stride(2) =1
edge({l) = 30
edge (2) = 30

retn = sfrdata(sds_id, start, stride, edges, winddata)

or
start[0] = O; { C)
start(1l] = 0;

stride[0] = 1;

stride(0] = 1;

edge[0] = 30;

edge[l] = 30;

retn = SDreaddata(sds id, start, stride, edges, winddata);

Example:

For reading the entire data set from an HDF file which contains only one 2-D
array:

FORTRAN:

integer start(2), edges(2), stride(2)
integer retn sfrdata

c Define the location, pattern + size of data to be read
YL = 30
XL = 30
start (1) 0
start(2) = 0
stride(l) = 1

!
[

stride(2)

46

edge(l) = XL

edge (2) = YL

retn = sfrdata(sds_id, start,stride,edges,winddat)
C:

/* Define the location, pattern + size of data to be read */

YL = 30;

XL = 30;

dims{0] = YL;
dims[1l] = XL;
start[0] = O;
start{l] = 0O;
stride[0] = 1;
stride([l] = 1;
edge[0] = dims([0];

edge[l] = dims[1];
retn = SDreaddata(sds_id, start,stride, edges,winddat);

9.4.7 Write non-HDF data to a file

Using standard FORTRAN and C statements for writing, the non-HDF data is written
into a new file (storage). In addition, the user may wish to print out all or
parts of the HDF data set to view the data or as a check of the
procedure/operation.

9.4.8 Optional operation: Get and Read Metadata

After opening the HDF file using the sfstart/SDstart, the first step is to
see if the file or data sets do indeed contain attributes. This is done by
using the following command:

Il

attr _index = sSDfindattr (sd_id, attr_name); (C)

attr index sffattr (sd_id, attr_name) (FORTRAN)

where
attr index = valid attribute index returned if attribute exists
sd id = file identifier
attr name = name of attribute (i.e.,Contents of file")

If there is a attribute index, the name, data type (num type), and count (number
of characters) of the attribute can be obtained:

retn= SDattrinfo(sd id, attr index, attr name, num_type, count); (C)
retn= sfgainfo (sd_id, attr index, attr_name, num type, count) (FORTRAN)

After completing these operations, the attributes can be read using the
following
retn= SDreadattr (sd id, attr index, buffer): (C)

retn= sfrattr (sd_id, attr index, buffer) (FORTRAN)

where

buffer

is allocated to hold the attribute data

The above steps can also be followed for each data set within the file by
getting the data set id (sds_id) of the data, finding a particular attribute
(i.e.,"Units") and getting and reading the data.

Example:

FORTRAN:

sd id=sfstart ("wind.hdf”, DFACC RDONLY)
attr index= sffattr (sd id,"file contents")

retn=
retn=

and

sfgainfo (sd _id, attr_index, "file contents", data type, count)

sfrattr (sd_id, attr_index, buffe;)

sds_id=sfselect (sd _id, 0)
attr index= sffattr (sds_id, "units")

retn=
retn=

sfgainfo (sds_id, attr_index,"units", data type, count)

sfrattr (sds_id, attr index, buffer)

sd_id=SDstart ("wind.hdf", DFACC RDONLY);
attr index= SDfindattr (sd_id,"file contents");

retn=
retn=

and

sds_id=

Sbattrinfo (sd_id, attr index,"file contents”, data type, count);

SDreadattr (sd _id, attr_ index, buffer) ;

SDselect (sd_id, 0):

attr index= SDfindattr (sds_id,"units");
retn= SDattrinfo (sds_id, attr_index,"units", data type, count);

retn=

SDhreadattr (sds id, attr_index, buffer);

9.4.9 Terminate/Close access to all files, data sets, and APIs

After writing the data to the new SDS array within the new HDF file, it is

necessary to
any possible

retn =

retn

In addition,

terminate or close access to the new data set in order to prevent
loss of data. This is done by the following:

sfendacc(sds_id) (FORTRAN)
or

SDendaccess (sds_id) (C)

the API called within the program must also be closed to prevent

any data loss:

retn =

sfend(sd _id) (FORTRAN)

or

47

retn = SDend(sd id) (C

Example:
FORTRAN:
integer sfendacc, sfend

retn = sfendacc(sds id)
retn sfend(sd_id)

retn = SDendaccess(sds_id);
retn SDend(sd_id);

9.4.10 Execute program

Execute like a standard FORTRAN or C program

48

49

10. Example Programs for Dealing with
Scientific Data Sets (SDS) in HDF

The following is a list of sample programs that illustrate how the HDF library,
and the SD API, can be used to work with HDF files. The example programs are
given in the FORTRAN programming language. However, the detailed steps for both
C and FORTRAN are the same. Only the syntax code particular to each language
should be different. The following example programs are provided:

Writing an SDS in HDF

Writing Attributes in HDF

Writing the SDS and attributes in HDF
Reading an HDF file

Reading HDF attributes (files and data sets)

s W

10.1 Writing an SDS in HDF
FORTRAN:
PROGRAM WRITDATA

integer*4 sd_id, sds_id, rank

integer*4 XL, YL

integer dims(2), start (2), edges (2), stride (2)
integer i, j, k, retn

integer sfstart, sfcreate, sfwdata, sfendacc, sfend
real rwind (30, 30)

cC
c DFACC_CREATE and DFNT_INT16 are defined in hdf.h but may have
C to be defined within the program for certain FORTRAN compilers
integer*4 DFACC_CREATE, DFNT_INT16
parameter (DFACC CREATE = 4, DFNT INT16=22)
rank = 2
XL = 30
YL = 30
C
C Create and open a new HDF file and initiate the SD interface
C
sd_id = sfstart('wind.hdf', DFACC CREATE)
C
C Define the rank (number of dimensions) and dimensions (size) of the
C HDF Scientific Data Set (SDS) to be created.
C
dims(l) = XL
dims(2) = YL
C
C Create the HDF SDS (sfselect would be used if writing to an
C existing HDF file or data set)
C
sds_id = sfcreate(sd_id, 'winds', DFNT_INTlé6, rank, dims)
C
C Open and read the existing non-HDF data set into an array (rwind)

OO0

12

Open (unit=10, file='wind.dat', form='formatted')

Do j = 1,30
Read (10, 12) {(rwind(i, j),i = 1,30)
Format (30(f4.1,1x))

Enddo

Define where in the file to write the data set (start--location),
the pattern of the data (stride--skip any values??), and the size
of the data set (edges) to be written to. This is done for each
dimension. start(x) = 0 is for writing at the beginning of the
newly created SDS and stride(x) = 1 signifies that no data is to
be skipped in the writing.

start (1) 0
start(2) = 0
edges (1) = XL
edges(2) = YL
stride(l) = 1
stride(2) = 1

Write the stored data (in the array rwind) to the new SDS
retn = sfwdata(sds id, start, stride, edges, rwind)
Terminate access to the array

retn = sfendacc(sds_id)

Terminate access to the SD interface and close the HDF file
retn = sfend(sd _id)

Stop
End

10.2 Writing Attributes in HDF

FORTRAN:

PROGRAM WRITEATT

aaoaaon

[eNeNe!

integer*4 sd id, sds_id, dim_id, retn
integer dims{2), start(2), edges(2), stride(2)
integer sfstart, sfselect, sfdimid, sfscatt, sfendacc, sfend

DFACC_RDWR, DFNT INT16 and DFNT CHAR8 are defined in hdf.h but
may have to be defined within the program for certain FORTRAN
compilers

integer*4 DFACC RDWR, DFNT_INT32, DFNT_CHARS

parameter (DFACC RDWR = 3, DFNT_INT1l6 = 22, DFNT_CHAR8 = 4)

Open the HDF file, 1initiate the SD interface, and get the
identifier for the file

50

a O

QO [OHONONS!

[oNeNe!

51

sd_id = gfstart('wind.hdf’', DFACC_RDWR)
Set an attribute the describe the contents of the file

retn = sfscatt(sd id, 'file contents', DFNT_CHARS8, 15,
+ 'lidar_LOS winds')

Get the identifier for the first data set (in this example, the
only data set)

sds_id = sfselect(sd id, 0)

Set an attribute(s) for the data array itself. In this example, the
units of the data are defined

retn = sfscatt(sds_id, 'units', DFNT CHAR8, 13, 'units = m/sec')
Terminate access to the data array

retn = sfendacc(sds_id)

Terminate access to the SD interface and close the HDF file
retn = sfend(sd_id)

Stop
End

10.3 Writing the SDS and attributes in HDF

FORTRAN:

PROGRAM WRITESDS

ONONeRONS!

integer*4 sd_id, sds id, rank, dim_id

integer*4 XL, YL

integer dims(2), start(2), edges(2), stride(2)

integer i, j, k, retn

integer sfstart, sfcreate, sfwdata, sfendacc, sfscatt, sfend
real rwind (30, 30)

DFACC_CREATE, DFACC RDWR, DFNT CHAR8 and DFNT_INT16 are defined
in hdf.h but may have to be defined within the program for certain
FORTRAN compilers

integer*4 DFACC_CREATE, DFNT_INT16, DFNT_CHARS, DFACC_RDWR
parameter (DFACC CREATE = 4, DFACC RDWR = 3, DFNT_INT16 = 22,
+ DFNT_CHAR8 = 4)

rank = 2
XL = 30
YL = 30

Create and open a new HDF file and initiate the SD interface

sd id = sfstart('wind.hdf', DFACC_ CREATE)

[ONONON®] [N NONe!

Qa0

ONCHONONSNONONS]

Qa0 [oNeNeNe! [ONONONS! [ONONe]

Q

12

Define the rank (number of dimensions) and dimensions (size) of the

HDF Scientific Data Set (SDS) to be created.

dims (1)
dims (2)

XL
YL

Create the HDF SDS (sfselect would be used if writing to an
existing HDF file or data set)

sds_id = sfcreate(sd_id, 'winds', DFNT_INT16, rank, dims)
Open and read the existing non-HDF data set into an array (rwind)
Open (unit = 10, file = 'wind.dat', form = 'formatted')

Do j=1,30
Read (10, 12) (rwind{(i, j),i=1,30)
Format (30(f4.1,1x))

enddo

Define where in the file to write the data set (start--location),
the pattern of the data (stride--skip any values??), and the size
of the data set (edges) to be written to. This is done for each
dimension. start(x) = 0 is for writing at the beginning cf the
newly created SDS and stride(x)=1 signifies that no data is to be
skipped in the writing.

start(l) = 0
start(2) = 0
edges(1l) = XL
edges(2) = YL
stride(1l) =1
stride(2) =1

Write the stored data (in the array rwind) to the new SDS
retn = sfwdata(sds id, start, stride, edges, rwind)

For writing attributes, set an attribute the describe the
contents of the file

retn = sfscatt(sd id, 'file_contents', DFNT_CHARS, 15,
'lidar LOS winds')

Set an attribute(s) for the data array itself. In this example, the

units of the data are defined

retn = sfscatt(sds id, 'units', DFNT_CHARS, 13, '‘units = m/sec')
Terminate access to the data array

retn = sfendacc(sds_id)

Terminate access to the SD interface and close the HDF file

retn = sfend(sd_id)

52

Stop
End

10.4 Reading an HDF file

FORTRAN:

aaQan Q00 QOO0 00 a0

oNoEO NSNS EPNS!

PROGRAM READDATA

integer*4 sd id, sds_id

integer*4 XL, YL

integer start(2), edges(2), stride(2)

integer i, j, %k, retn

integer sfstart, sfselect, sfrdata, sfendacc, sfend
real rwind (30, 30)

DFACC_RDONLY is defined in hdf.h but may have to be defined
within the program for certain FORTRAN compilers

integer*4 DFACC_RDONLY
parameter (DFACC RDONLY = 1)

MAX NC NAME (maximum # of characters) and MAX VAR DIMS (maximum
of dimensions) are defined in netcdf.h but may have to be defined
here.

integer*4 MAX NC_NAME, MAX VAR DIMS
parameter (MAX NC NAME = 256, MAX VAR DIMS = 32)
integer dims(MAX VAR DIMS)

XL = 30
YL = 30

Open the HDF file and initiate the SD interface
sd id = sfstart('wind.hdf', DFACC_RDONLY)

Select the first data set in the file (In this example, the only
dataset) .

sds_id= sfselect(sd id, 0)

To read from the data set, define the location (start--where in the
file), the pattern (stride--skip any values??),and the size(edges)
of the data. This is done for each dimension. start(x) = 0 is for
reading at the beginning of the file and stride(x) = 1 signifies
that no data is to be skipped in the reading.

dims(l) = XL
dims (2) = YL
start(l) = 0
start(2) = 0
stride(l) =1
stride(2) =1

edges (1) = dims (1)

53

aQaQ

[ONONONY]

12

edges(2) = dims(2)
Read the array dataset
retn = sfrdata(sds_id, start, stride, edges, rwind)

Optional - Print out data (ASCII) read from the HDF file
In this example we are writing to the screen (*)

Do § = 1, 30

write(*,12) (rwind(i,j),i=1,30)
format (30(f4.1,1x))
enddo

Terminate access to the array

retn = sfendacc(sds_id)

Terminate access to the SD interface and close the HDF file
retn = sfend(sd id)

Stop
End

10.5 Reading HDF attributes (files and data sets

FORTRAN:

[ONPNON]

OO0

[ONONOEe]

[ORONSN!

PROGRAM READATTR

integer*4 sd id, sds_id, units_buffer

integer attr index, data_type, count, retn

character attr name * 13

character char buffer * 20

integer sfstart, sfrnatt, sfrcatt, sfgainfo, sffatr, sfselect
integer sfendacc, sfend

DFACC RDWR is defined in hdf.h but may have to be defined
within the program for certain FORTRAN compilers

integer*4 DFACC_ RDWR, DFACC_RDONLY
parameter (DFACC RDWR = 3, DFACC_RDONLY = 4)

Open the HDF file and initiate the SD interface
sd id = sfstart('wind.hdf', DFACC_RDONLY)

Select the first data set in the file (In this example, the only
dataset) .

sds_id= sfselect(sd id, 0)

Find the attribute which describes the contents of the file
(usually 'file contents')

attr_index = sffattr(sd id, 'file contents')

54

Qa0 o NeNe NS O NON®]

QO

55

Get information about the file attribute

retn = sfgainfo(sd_id, attr_index, attr name, data type, count)
Read the file attribute data

retn = sfrcatt{sd_id, attr index, char buffer)

Read the attributes for the first data set. First step is to get
the identifier.

sds_id = sfselect(sd id, 0)

Find the attribute which defines the units cf the data set
("units')

attr_index = sffattr(sds_id, 'units')

Get information about the data set attribute

retn = sfgainfo(sds_id, attr_index, attr name, data type, count)
Read the data set attribute data

retn = sfrcatt(sds id, attr index, units buffer)

Terminate access to the array

retn = sfendacc(sds_id)

Terminate access to the SD interface and close the HDF file
retn = sfend(sd_id)

Stop
End

56

11. Browsing and Visualizing HDF Data

With the recent explosion of data volumes, numerous visualization and browsing
tools have been developed which allow users to quickly view the contents of data
sets created elsewhere. This has proven especially beneficial for users of HDF.

In fact, many visualization tools have been created specifically with HDF in
mind. The NCSA anonymous ftp server provides a set of free software that enables
the user to visualize and browse HDF files. Tools include the JAVA-based HDF
Browser (http://hdf.ncsa.uiuc.edu/java-hdf-html) and the Scientific Data Browser
(http://hdf.ncsa.uiuc.edu/sdb/sdb.html). In addition, the following are
available but have not been updated to run with the current version of HDF: NCSA
Collage, NCSA Datascope, NCSA XDataSlice, and NCSA Polyview.

Besides NCSA, there are other sites and centers that also provide public domain
(free) software that can be used to browse and visualize HDF files. This
software includes, among others: LinkWinds, WebWinds, GRASS, FREEFORM, VISTAS,
ImageMagick, and Envision. Visualization tools and software such as LinkWinds
and EOSView (http://edhsl.gsfc.nasa.gov/waisdata/toc/tp4450601ltoc.html) can be
used for working with HDF-EOS type data (point, swath and grid data sets).

Finally, there are also commercial (for a fee) software packages that can be
used to work with and browse HDF files. These include: DataExplorer, Spyglass,
PV-Wave, Wavefront, IDL, AVS, IRIS Explorer, Transform, and ER Mapper.

Please see Section 4: HDF Browsing and Visualization Tools for further detail,
including internet addresses, on the above software.

57

12. HDF Laboratory

Due to the interactive nature of the Question and Answer session, the gquestions
are not provided in this version of the tutorial, but may be viewed in the HTML
version at http://cyclone.swa.com/meteorology/hdf/tutorial/welcome.html. However,

a brief overview is provided below. The following are the general sections that
are covered by the Laboratory:

Section I: General Background: HDF and the HDF Library (1-9)
Section II: Methods of Working with HDF Files (10-16)
Section III: Scientific Data Model (17-20)

Section IV: Attributes and Metadata (21-25)

Section V: Using the SD API to write an Existing Data Set in HDF
(26-36)

Section VI: Querying /and Reading an HDF File (37-39)

12.1 Lab Directions

The question and answer section of the tutorial was developed in Java script and
is best viewed using the latest releases of Microsoft Internet Explorer
(http://microsoft.com/windows/ie/default.htm) and Netscape navigator
(http://home.de.netscape.com/). When navigating through the tutorial, individual
questions will be loaded on the same window and will be controlled by the
"Previous question" and "next question" buttons. However, new windows will be
opened when the user attempts to look at the preview material for each question
and thus allowing the user to toggle back and forth from the question and the
material. To exit the tutorial, just click the "back” from the main question
screen and this will bring the user back to the Laboratory menu. When done with a
"oreview" window, simply close out the window and return to the question
window/screen.

In this section we provide a series of questions designed for the users of the
tutorial to test themselves on how well they understood the material presented
in the tutorial and, more importantly, to gauge how comfortable they feel with
HDF.

The questions more or less follow the order of the topics covered in the
"Lecture" component of the tutorial. The Laboratory menu provides a breakdown by
section of the various questions, and allows the user to select which topics
they would like to focus their attention on.

Each question contains the question itself, a set of possible answers,
navigation buttons ("Next Question", "Previous Question", "Lab Menu", "End Lab",
"Submit Answer") and, most importantly, a feature which allows the user to
review material pertaining to the question before answering or after answering
incorrectly. This is done by selecting the "Preview Material" button. Since
some users will like to take the "test"™ without any help and others will like to

58

review material before answering (particularly those who may have skipped
directly to the Laboratory), it is up to the individual user to decide how
to proceed.

It should be noted that, in many cases, there is more than one correct answer
for each individual question. The user is allowed to select more than one
response and will only receive an "Answered Correctly"” response if ALL correct
responses have been selected.

To help the users gauge their understanding of HDF and how well they are
answering the questions, a "performance gauge" is provided in the upper right
hand corner of each question. This gauge provides both a numerical (i.e. 7 of
11) and graphical (sliding color bar for 0 - 100%) representation of user
performance. The "score" found in the performance gauge only reflects the
users' initial answer to each gquesticn.

The user's performance in the Laboratory is further diagnosed in a Progress
Report reached by clicking on the performance gauge. Included in this report
are:

- number of questions answered correctly

- number of questions answered incorrectly
- number of questions left unanswered

- list of questions answered correctly

- list of questions answered incorrectly

- list of questions left unanswered

API
EOS
EOSDIS
ESDIS
FAQ
GB
HDF
HDF-EOS
JHI
NASA
NCSA
SD

SDs
SWA

59

13. ACRONYM LIST

Application Programming Interface

Earth Observing System

EOS Data and Information System

Earth Science Data and Information System
Frequently Asked Questions

Giga-Byte

Hierarchical Data Format

Hierarchical Data Format - Earth Observing System
Java HDF Interface

National Aeronautics and Space Administration
National Center for Supercomputer Applications
Scientific Data

Scientific Data Set

Simpson Weather Associates

-3 HDF Laboratory - Microsoft Intemnet Exp!orer

.. 00 d@ @ 3 ¢ H @
. Hily Charnels | Fulicosen Mal

Back” . Foward - Stop Refesh Home | Seach

m IE http://cyclone. swa.com/meteorology/hdf Atutorial/Q uestion.html

|
|

Links @)Bostof thoWeb €)Channol Gude €)Customize Liks &]Intemet Explorer Nows €]Intomet Start

 SECTION! QUESTION 8]

17

| The user may elect to group all the deta “cbiects" contained within 2

' Tne
" Falss
Preview Materia Submi Anewer(s)

Nest Question |

[[T [@ntemetzone

3 HDF Laboratow chrosoﬂ Intelnel Explorer

' '“M w ﬁo F ﬂ* SRR Tt ames o o “"
e @I’Ql@@@@ g @R
Back meard Refresh Home | Seach Favortes Histoy Charmels | Fulicresn Mal

JM@ hitp: //cyclone. swa.com/meteorclogy/hdf tutorial/Q uestion. htmi

|Liks &)Bestof theWeb §)Channel Guide) Customize Links &]Intemet Explorer Nows €]Intemet Start

SECHONH QUESTION 10 T N

1012

,jmmrmmmmmmummmmmr
| es using which ot olowing mettods?

: »r':ImmothgamhglrMmemmmmm
T~ Command-ine uaiiies.

T Visunlealion software.
I~ Alfof the above.

PmimMatuialI -v>SMAnmel[sl|

Pmuxﬁumml o Next Question '

[E7 Avplet sated T (@ nemetzone

HDF Laboratory chmsoﬂ Internet Explorer

Pe £ Yo ﬁo Favortee Hebp

& o R A4l QA & I §|H @B
l Chamski

J

|

Back meard ! Refresh Home | Seach Favores History Fuliceen Mal
ml@ hitp: //cyclone. swa. com!meleaolowfl'dltwonallﬂueshml'\tnﬂ
Links §)BestcitheWeb &]Channel Guide @ Customize Links €]intemet Explorer News € Jintemet Start

. Mdhmmmﬁ@&hm?

i—#ﬂ Mhe&dkmwﬁmawmwbyhm

™ APPs : e available in both C and Forran.
‘lrrmmawﬂﬁbfadd&QMWWHW
| j!"uaum

€] Applet started

3 HDF Laboratory - Microsoft Internet Explorer

ineaa:fmnormneh

3.-».@-@@@]i@

B Fofward Refresh Home Seach Favoites HIM
J Address @ http: //cyclone. swa.com/meteorology/hdf tutorial/Q uestion.htm!
[Uinks @)Bestof thoweb @)Channel Guide &)Customize Links & Jintemet Explorer News & Jintemet Start

SECTIONH QUESTION 14 R e

 aa7

’ FMNMMMHDFMMMdCamemm
T~ show the user to perform common operstions on HDF fles.
I~ are available for all actions and routines covered by the APls.

——

[&] Applet started . [[[@8 ntemetzone

3 HDF Laboratory

Microsoft Internet E xplorer

Bo E® Yow Go Favodes Hop

M A - | @ @ 3
|
]

Forward Stop Home Seach Favortes Histoy Channels | Fulicreen Mai
Address [€) http://cyclone. swa. com/meteofdowfhdmonaua uestion.htmi

Links €7]Best of the Web €]Channoi Guide @ Customize Links @ int €]intemet Explorer News €)intomet Start

SECTION ¥ QUESTION 22 | N

5 of&
UdeDFmMMamﬂumwwm
previously defined by the HDF lbeary.

C T
€ Fales

[Provn st SubitArawets) |

Previous Question Next Question I

[€] Applst started [| [@ intemet zone

-3 HDF Laboratory - Mu:msoft Inlemel E xploter

Ebici':{mﬁol"mﬂeb

‘?.*.@IQJ@@@ 2

Back Fowad Reltesh Home Search F ish Charrek ‘ Fullscrean ~ Mai
f Address @http: //cyclone. swa.com/meteoiology/hdf Autorial/Question. htmi
| Links @]BastoftheWsb {]Chennel Guide &]CustomizeLinks &]Intemet Explorer News @ Intemet Start

Progress Report for the HDF Laboratory

Number of questions answered comactly: 5 120%
Number of questions answeted incomectiy: K| 70X

Number of quastions left unanswared: k| 73.0%

Below is the st of questions answersd comecty:
2.3.4,9,16,

Below is the st of questions answered incomecty:
578

Bedow is the kst of quastions left unanswered:

1,6,10,11,12,13,14,15,17.16,19, 20,21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32,33,34,35,3,37,38, 39,

Retum to Lab

€] Applet started f | [[@ rtemet zone

